EDAN Agile PLM Electronic Signature Information

--Signatures related to this document and performed in EDAN Agile PLM.

文件名称: X8 X10 X12_说明书_英文

文件编号:01.54.458083

版本:1.2

产品型号: X10;X12;X8

项目编码(Project Code): 00026I001

签批信息:

作者:吴孝萍 (wuxiaoping) 2018-12-19 12:13:41

审核人:程亮 (chengliang) 2018-12-19 15:35:05

审核人: 韩 吉灯 (hanjideng) 2018-12-19 14:25:47

审核人: 陈 艳娟 (chenyanjuan) 2018-12-19 15:44:31

审核人: 王 红春 (wanghongchun) 2018-12-19 17:07:12

审核人: 杨琳 (yanglin) 2018-12-19 13:55:53

审核人: 刘 自成 (liuzicheng) 2018-12-19 14:37:09

批准人: 夏 欢欢 (xiahuanhuan) 2018-12-20 10:21:02

批准人:陈浩杰 (chenhaojie) 2018-12-20 11:13:18

版权©深圳市理邦精密仪器股份有限公司 (Copyright©Edan Instrument,Inc.)

X8/X10/X12

Patient Monitor Version 1.2

User Manual

About this Manual

P/N: 01.54.458083

MPN: 01.54.458083012

Release Date: December 2018

© Copyright EDAN INSTRUMENTS, INC. 2018. All rights reserved.

Statement

This manual will help you understand the operation and maintenance of the product better. It is reminded that the product shall be used strictly complying with this manual. User's operation failing to comply with this manual may result in malfunction or accident for which EDAN INSTRUMENTS, INC. (hereinafter called EDAN) cannot be held liable.

EDAN owns the copyrights of this manual. Without prior written consent of EDAN, any materials contained in this manual shall not be photocopied, reproduced or translated into other languages.

Materials protected by the copyright law, including but not limited to confidential information such as technical information and patent information are contained in this manual, the user shall not disclose such information to any irrelevant third party.

The user shall understand that nothing in this manual grants him, expressly or implicitly, any right or license to use any of the intellectual properties of EDAN.

EDAN holds the rights to modify, update, and ultimately explain this manual.

Responsibility of the Manufacturer

EDAN only considers itself responsible for any effect on safety, reliability and performance of the equipment if:

Assembly operations, extensions, re-adjustments, modifications or repairs are carried out by persons authorized by EDAN, and

The electrical installation of the relevant room complies with national standards, and

The instrument is used in accordance with the instructions for use.

I

Terms Used in this Manual

This guide is designed to give key concepts on safety precautions.

WARNING

A **WARNING** label advises against certain actions or situations that could result in personal injury or death.

CAUTION

A **CAUTION** label advises against actions or situations that could damage equipment, produce inaccurate data, or invalidate a procedure.

NOTE

A **NOTE** provides useful information regarding a function or a procedure.

Table of Contents

Chapter 1 Intended Use and Safety Guidance	1
1.1 Intended Use/Indications for Use	1
1.2 Safety Guidance	1
1.2.1 Protecting Personal Information	6
1.3 Explanation of Symbols on the Monitor	7
Chapter 2 Installation	11
2.1 Initial Inspection	11
2.2 Mounting the Monitor	11
2.3 Connecting the Power Cable	11
2.4 Checking the Monitor	11
2.5 Checking the Recorder	12
2.6 Setting Date and Time	12
2.7 Handing Over the Monitor	12
2.8 FCC Statement	12
2.9 FCC RF Radiation Exposure Statement	13
Chapter 3 Basic Operation	14
3.1 Overview	14
3.1.1 Front View	14
3.1.2 Rear View	15
3.1.3 Side View	16
3.2 Operating and Navigating	17
3.2.1 Using Keys	18
3.3 Operating Mode	19
3.3.1 Demo Mode	19
3.3.2 Standby Mode	20
3.3.3 Night Mode	20
3.3.4 Privacy Mode	21
3.3.5 NFC Mode	21
3.4 Changing Monitor Settings	22
3.4.1 Adjusting Screen Brightness	22
3.4.2 Changing Date and Time	22
3.5 Adjusting Volume	22
3.5.1 Adjusting Key Volume	22
3.5.2 Adjusting Alarm Volume	22
3.5.3 Adjusting Beat Volume	23
3.6 Checking Your Monitor Version	23
3.7 Networked Monitoring	23
3.8 Setting Languages	23
3.9 Calibrating Screens	23

3.10 Disabling the Touch Screen	24
3.11 Using the Barcode Scanner	24
Chapter 4 Alarms	25
4.1 Alarm Category	25
4.1.1 Physiological Alarms	25
4.1.2 Technical Alarms	25
4.1.3 Prompts	25
4.2 Selecting Alarm Tone Type	25
4.3 Alarm Levels	25
4.4 Controlling Alarm	27
4.4.1 Setting Parameter Alarm	27
4.4.2 Audio Alarm Paused	28
4.4.3 Audio Alarm off	29
4.4.4 Alarm Reset	29
4.5 Latching Alarms	30
4.6 Disabling Sensor Off Alarms	30
4.7 Network Disconnected Alarms	30
4.8 Testing Alarms	30
Chapter 5 Alarm Information	31
5.1 Physiological Alarm Information	31
5.2 Technical Alarm Information	36
5.3 Prompts	45
5.4 Adjustable Range of Alarm Limits	48
Chapter 6 Managing Patients	50
6.1 Admitting a Patient	50
6.1.1 Patient Category and Paced Status	50
6.2 Quick Admit	51
6.3 Barcode Admit	51
6.4 Editing Patient Information	51
6.5 Central Monitoring System	51
Chapter 7 User Interface	53
7.1 Setting Interface Style	53
7.2 Selecting Display Parameters	53
7.3 Changing Waveform Position	53
7.4 Changing Interface Layout	53
7.5 Viewing Trend Screen	53
7.6 Viewing OxyCRG Screen	54
7.7 Viewing Large Font Screen	54
7.8 Viewing the Vital Screen	54
7.9 Viewing the Bed View Window	55
7.9.1 Opening the Red View Window	55

7.9.2 Settings of the Bed View Window	55
7.10 Changing Parameter and Waveform Colors	55
7.11 User Configuration	55
7.12 Default Configuration	56
7.13 Neonatal Configuration*	56
Chapter 8 Monitoring ECG	57
8.1 Overview	57
8.2 ECG Safety Information	57
8.3 ECG Display	59
8.3.1 Changing the Size of the ECG Wave	59
8.3.2 Changing the ECG Filter Settings	60
8.4 Selecting Calculation Lead	60
8.5 Monitoring Procedure	61
8.5.1 Preparation	
8.5.2 Connecting ECG Cables	
8.5.3 Selecting Electrode Type	61
8.5.4 Installing Electrodes	62
8.6 ECG Menu Setup	66
8.6.1 Setting Alarm Source	66
8.6.2 Setting Beat Source	66
8.6.3 Smart Lead Off	
8.6.4 ECG Screen Layout	
8.6.5 Setting Pace Status	68
8.6.6 ECG Calibration	
8.6.7 ECG Waveform Settings	69
8.7 12-Lead ECG Monitoring	
8.7.1 Activating 6/10 Electrodes Monitoring	69
8.7.2 Analysis Function	69
8.7.3 Waveform Durations and Isoelectric Segments	70
8.8 ST Segment Monitoring	70
8.8.1 Setting ST Analysis	71
8.8.2 ST Display	71
8.8.3 About ST Measurement Points	72
8.8.4 Adjusting ST and ISO Measurement Points	
8.9 Arrhythmia Monitoring	72
8.9.1 Arrhythmia Analysis	72
8.9.2 ARR Analysis Menu	76
Chapter 9 Monitoring RESP	78
9.1 Overview	78
9.2 RESP Safety Information	
9.3 Electrode Placement for Monitoring RESP	79

9.4 Cardiac Overlay	79
9.5 Chest Expansion	79
9.6 Abdominal Breathing	79
9.7 Selecting RESP Lead	80
9.8 Changing Hold Type	80
9.9 Changing the Size of the Respiration Wave	80
9.10 Changing the Apnea Alarm Time	80
Chapter 10 Monitoring SpO ₂	81
10.1 Overview	81
10.2 SpO ₂ Safety Information	81
10.3 Measuring SpO ₂	82
10.4 Measurement Limitations	83
10.5 Assessing the Validity of a SpO ₂ Reading	84
10.6 SpO ₂ Alarm Delay	84
10.7 Perfusion Index (PI)*	85
10.8 Measuring SpO ₂ and NIBP Simultaneously	85
10.9 Setting Pitch Tone	85
10.10 Setting Sensitivity	85
Chapter 11 Monitoring PR	86
11.1 Overview	86
11.2 Setting PR Source	86
11.3 Setting PR Volume	86
11.4 Selecting the Active Alarm Source	86
Chapter 12 Monitoring NIBP	87
12.1 Overview	87
12.2 NIBP Safety Information	87
12.3 Measurement Limitations	88
12.4 Measurement Methods	89
12.5 Measurement Procedures	89
12.5.1 Operation Prompts	90
12.5.2 Correcting the Measurement if Limb is not at Heart Level	91
12.6 NIBP Multi-Review Window	91
12.7 Resetting NIBP	91
12.8 Calibrating NIBP	91
12.9 Leakage Test	91
12.10 Setting Inflation Mode	92
12.11 Cleaning Mode	92
Chapter 13 Monitoring TEMP	93
13.1 Overview	93
13.2 TEMP Safety Information	93
13.3 Switching T1/T2 On/Off	93

13.4 TEMP Monitoring Setup	93
13.5 Calculating Temp Difference	93
Chapter 14 Monitoring IBP	94
14.1 Overview	94
14.2 IBP Safety Information	94
14.3 Monitoring Procedures	94
14.3.1 Selecting a Pressure for Monitoring	95
14.3.2 Zeroing the Pressure Transducer	95
14.3.3 Troubleshooting the Pressure Zeroing (Taking Art for Example)	96
14.3.4 IBP Calibration	96
14.4 Changing the IBP Waveform Ruler	96
14.5 IBP Waveform Overlapping	96
14.6 Measuring PAWP	97
14.6.1 Measurement Procedures	97
14.7 Calculating CPP	98
14.7.1 Calculation Procedures	98
14.8 Calculating PPV	98
Chapter 15 Monitoring CO ₂	100
15.1 Overview	100
15.2 CO ₂ Safety Information	100
15.3 Monitoring Procedures	101
15.3.1 Zeroing the Sensor	101
15.3.2 Sidestream CO ₂ Module	101
15.4 Setting CO ₂ Corrections	103
15.5 Setting Apnea Alarm Time	103
15.6 Setting CO ₂ Waveform	104
Chapter 16 Monitoring C.O.	105
16.1 Overview	105
16.2 C.O. Safety Information	105
16.3 C.O. Monitoring	105
16.4 Blood Temperature Monitoring	109
Chapter 17 Freeze	110
17.1 Overview	110
17.2 Entering/Exiting Freeze Status	110
17.2.1 Entering Freeze Status	110
17.2.2 Exiting Freeze Status	110
17.3 Reviewing Frozen Waveform	110
Chapter 18 Review	111
18.1 Trend Graph Review	111
18.2 Trend Table Review	112
18 3 NIRP Review	112

	18.4 Alarm Review	113
	18.5 ARR Review	113
	18.6 12-Lead Analysis Review	114
Ch	napter 19 Calculation and Titration Table	115
	19.1 Drug Calculation	
	19.1.1 Calculation Procedures	115
	19.1.2 Calculation Unit	116
	19.1.3 Titration Table	116
	19.2 Hemodynamic Calculation	117
	19.2.1 Calculation Procedure	117
	19.2.2 Input Parameters	117
	19.2.3 Output Parameters	117
	19.3 Oxygenation Calculation	118
	19.3.1 Calculation Procedure	118
	19.3.2 Input Parameters	118
	19.3.3 Output Parameters	119
	19.4 Ventilation Calculation	119
	19.4.1 Calculation Procedure	119
	19.4.2 Input Parameters	120
	19.4.3 Output Parameters	120
	19.5 Renal Function Calculation	120
	19.5.1 Calculation Procedure	120
	19.5.2 Input Parameters	121
	19.5.3 Output Parameters	121
Ch	napter 20 Recording	122
	20.1 Performance of the Recorder	122
	20.2 Starting and Stopping Recording	122
	20.3 Recorder Operations and Status Messages	124
	20.3.1 Record Paper Requirement	124
	20.3.2 Proper Operation	124
	20.3.3 Paper Out	124
	20.3.4 Replacing Paper	124
	20.3.5 Removing Paper Jam	125
Ch	napter 21 Printing Patient Reports	127
	21.1 Printer Settings	127
	21.2 Starting and Stopping Report Printing	127
Ch	napter 22 Other Functions	129
	22.1 Nurse Call	129
	22.2 Analog Output and Defibrillator Synchronization	129
	22.3 Wi-Fi	129
	22.4 Storing Data in the Storage Device	130

22.4.1 Data Stored in the Storage Device	130
22.4.2 Activating/ Deactivating Data Storing	130
22.4.3 Selecting a Storage Device	131
22.4.4 Reviewing Data Stored in the Storage Device	131
22.4.5 Deleting Data Stored in the Storage Device	131
22.4.6 Exporting Data Stored in the Internal Storage Device	132
22.4.7 Formatting the Internal Storage Device	132
22.4.8 Ejecting a Removable Device	132
22.5 MEWS*	132
22.5.1 MEWS Score Interface	133
22.5.2 MEWS Score Criteria	133
22.5.3 MEWS Score Method	133
22.5.4 MEWS Score Result	134
22.5.5 MEWS Trend Table	134
Chapter 23 Using Battery	135
23.1 Battery Safety Information	135
23.2 Battery Power Indicator	136
23.3 Battery Status on the Main Screen	136
23.4 Checking Battery Performance	136
23.5 Recycling the Battery	136
23.6 Maintaining the Battery	137
Chapter 24 Care and Cleaning	138
24.1 General Points	138
24.2 Cleaning	138
24.2.1 Cleaning the Monitor	139
24.2.2 Cleaning the Reusable Accessories	139
24.3 Disinfection	140
24.3.1 Disinfecting the Monitor	141
24.3.2 Disinfecting the Reusable Accessories	141
24.4 Cleaning and Disinfecting Other Accessories	142
Chapter 25 Maintenance	143
25.1 Inspecting	143
25.2 Maintenance Task and Test Schedule	143
Chapter 26 Warranty and Service	144
26.1 Warranty	144
26.2 Contact Information	144
Chapter 27 Accessories	145
27.1 ECG Accessories	
27.2 SpO ₂ Accessories	148
27.3 NIBP Accessories	148
27.4 TEMP Accessories	149

27	.5 IBP Accessories	149
27.	.6 CO ₂ Accessories	150
27.	.7 C.O. Accessories*	151
27.	.8 Other Accessories	151
A Produ	uct Specification	153
A.1	1 Classification	153
A.2	2 Physical Specifications	153
	A.2.1 Size and Weight	153
	A.2.2 Function Configuration	153
	A.2.3 Environment Specification	154
	A.2.4 Display	154
	A.2.5 Battery Specification	155
	A.2.6 Recorder	155
	A.2.7 Data Management	155
A.3	3 Wi-Fi (Optional)	156
A.4	4 ECG	157
A.5	5 RESP	161
A.6	6 NIBP	162
A.7	7 SpO ₂	163
A.8	8 TEMP	164
A.9	9 PR	165
A.1	10 IBP	165
A.1	11 CO ₂	166
A.1	12 C.O	168
A.1	13 Interfaces	169
	A.13.1 Analog Output (Optional)	169
	A.13.2 Defibrillator Synchronization (Optional)	169
	A.13.3 Nurse Call (Optional)	170
	A.13.4 USB Interfaces	170
	A.13.5 VGA Interface (Optional)	171
	A.13.6 Wired Network Interface	171
B EMC	Information	172
B.1	1 Electromagnetic Emissions	172
B.2	2 Electromagnetic Immunity	172
B.3	3 Electromagnetic Immunity	174
B.4	4 Recommended Separation Distances	177
C Defau	ult Settings	178
	Patient Information Default Settings	
C.2	2 Alarm Default Settings	178
C.3	3 ECG Default Settings	178
$C \Lambda$	1 RESP Default Settings	180

D A	Abbreviations	185
	C.11 C.O. Default Settings	184
	C.10 CO ₂ Default Settings	183
	C.9 IBP Default Settings	182
	C.8 TEMP Default Settings	182
	C.7 NIBP Default Settings	182
	C.6 PR Default Settings	181
	C.5 SpO ₂ Default Settings	181

Chapter 1 Intended Use and Safety Guidance

1.1 Intended Use/Indications for Use

The monitors are intended to be used for monitoring, storing, recording and reviewing of, and to generate alarms for, multiple physiological parameters of adults, pediatrics and neonates. The monitors are intended for use by trained healthcare professionals in hospital environments.

The monitored physiological parameters include: ECG, respiration (RESP), temperature (TEMP), oxygen saturation of arterial blood (SpO₂), pulse rate (PR), non-invasive blood pressure (NIBP), invasive blood pressure (IBP), carbon dioxide (CO₂), cardiac output (C.O.).

The monitors are not intended for MRI environments.

1.2 Safety Guidance

Federal (U.S.) law restricts this device to sale by or on the order of a physician.

- 1 To ensure that the monitor works properly, please read the user manual and follow the steps before using the monitor.
- 2 Before using the device, the equipment, patient cable and electrodes etc. should be checked. Replacement should be taken if there is any evident defect or signs of aging which may impair the safety or performance.
- 3 Medical technical equipment such as these monitor/monitoring systems must only be used by persons who have received adequate training in the use of such equipment and who are capable of applying it properly.
- 4 EXPLOSION HAZARD-Do not use the device in a flammable atmosphere where concentrations of flammable anesthetics or other materials may occur.
- 5 SHOCK HAZARD-To avoid the RISK of electric shock, this equipment must only be connected to a SUPPLY MAINS with protective earth.
- 6 Do not come into contact with the patient, table, or the monitor during defibrillation.
- 7 The simultaneous use of cardiac pacemaker and other patient-connected equipment may cause safety hazard.
- Extreme care must be exercised when applying medical electrical equipment. Many parts of the human/machine circuit are conductive, such as the patient, connectors, electrodes, transducers. It is very important that these conductive parts do not come into contact with other grounded, conductive parts when connected to the isolated patient input of the device. Such contact would bridge the patient's isolation and cancel the protection provided by the isolated input. In particular, there must be no contact of the neutral electrode and ground.
- 9 Devices connecting with monitor should be equipotential.
- 10 If leakage or foul odor is detected, ensure that there's no fire around.

- 11 Magnetic and electrical fields are capable of interfering with the proper performance of the device. For this reason make sure that all external devices operated in the vicinity of the monitor comply with the relevant EMC requirements. X-ray equipment or MRI devices are a possible source of interference as they may emit higher levels of electromagnetic radiation.
- 12 Route all cables carefully to avoid possible entanglement, apnea, or electrical interference. For the device mounted over the patient, sufficient precautionary measures should be taken to prevent it from falling on the patient.
- 13 If the protective grounding (protective earth) system is doubtful, the monitor must be supplied by internal power only.
- 14 Do not rely exclusively on the auditory alarm system for patient monitoring. Adjustment of alarm volume to a low level or off during patient monitoring may result in a hazard to the patient. Remember that the most reliable method of patient monitoring combines close personal surveillance with correct operation of monitoring equipment.
- 15 Accessory equipment connected to the analog and digital interfaces must be certified according to the respective IEC/EN standards (e.g. IEC/EN 60950 for data processing equipment and IEC/EN 60601-1 for medical equipment). Furthermore all configurations shall comply with the valid version of the standard IEC/EN 60601-1. Therefore anybody, who connects additional equipment to the signal input or output connector to configure a medical system, must make sure that it complies with the requirements of the valid version of the system standard IEC/EN 60601-1. If in doubt, consult our technical service department or your local distributor.
- 16 The monitor is equipped with Wi-Fi to receive RF electromagnetic energy. Therefore, any other equipment complying with CISPR radiation requirements may also interfere with the wireless communication and make it interrupted.
- 17 Only patient cable and other accessories supplied by EDAN can be used. The performance and electric shock protection cannot be guaranteed, and the patient may be injured otherwise. Prior to use, check if the casing of a disposable or sterilized accessory is intact. Do not use it if its casing is damaged.
- 18 When interfacing with other equipment, a test for leakage current must be performed by qualified biomedical engineering personnel before using with patients.
- 19 If several items of medical equipment are interconnected, pay attention to the sum of the leakage currents, otherwise it may cause shock hazard. Consult your service personnel.
- 20 During monitoring, if the power supply is off and there is no battery for standby, the monitor will be off. The settings configured by the user can be stored, and settings not configured by user keep no change. That is, the last settings used will be recovered when the power is restored.

- 21 Wireless LAN equipment contains an intentional RF radiator that has the potential of interfering with other medical equipment, including patient implanted devices. Be sure to perform the electromagnetic compatibility test, before installation and any time new medical equipment is added to the Wireless LAN coverage area.
- 22 The device and accessories are to be disposed of according to local regulations after their useful lives. Alternatively, they can be returned to the dealer or the manufacturer for recycling or proper disposal. Batteries are hazardous waste. Do NOT dispose them together with house-hold garbage. At the end of their life hand the batteries over to the applicable collection points for the recycling of waste batteries. For more detailed information about recycling of this product or battery, please contact your local Civic Office, or the shop where you purchased the product.
- 23 The packaging is to be disposed of according to local or hospital's regulations; otherwise, it may cause environmental contamination. Place the packaging at the place which is inaccessible to children.
- 24 After defibrillation, the ECG display recovers within 10 seconds if the correct electrodes are used and applied based on the manufacturers' instructions.
- 25 Clinical decision making based on the output of the device is left to the discretion of the provider.
- 26 This equipment is not intended for home usage.
- 27 Do not service or maintain the monitor or any accessory which is in use with the patient.
- 28 The appliance coupler or mains plug is used as isolation means from supply mains. Position the monitor in a location where the operator can easily access the disconnection device.
- 29 Assembly of the monitor and modifications during actual service life shall be evaluated based on the requirements of IEC60601-1.
- 30 The monitors are MR Unsafe. The monitors are not intended for use in an MRI environment.
- 31 Without use of data store function, all data measured (including trend data, review data, alarm events and so on) are cleared either when the monitor is turned off or when the monitor is powered down in the process of monitoring.
- 32 Additional multiple socket-outlets or extension cords can't be connected to the system.
- 33 Only items that have been specified as part of the system or specified as being compatible with the system can be connected to the system.
- 34 Make sure networking function is used in a secure network environment.
- 35 Portable and mobile RF communications equipment can affect medical electrical equipment; refer to the recommended separation distances provided in this user manual.
- 36 All the accessories connected to system must be installed outside the patient vicinity, if they do not meet the requirement of IEC/EN 60601-1.
- 37 Only recommended batteries can be used for the monitor.

- 38 The medical electrical equipment needs to be installed and put into service according to the EMC Information provided in this user manual.
- 39 Connecting any accessory (such as external printer) or other device (such as the computer) to this monitor makes a medical system. In that case, additional safety measures should be taken during installation of the system, and the system shall provide:
 - a) Within the patient environment, a level of safety comparable to that provided by medical electrical equipment complying with IEC/EN 60601-1, and
 - b) Outside the patient environment, the level of safety appropriate for non-medical electrical equipment complying with other IEC or ISO safety standards.
- 40 Using accessories other than those specified may result in increased electromagnetic emission or decreased electromagnetic immunity of the monitoring equipment.
- 41 The monitor should not be used adjacent to or stacked with other equipment. If adjacent or stacked use is necessary, you must check that normal operation is possible in the necessary configuration before you start monitoring patients.
- 42 Do not touch accessible parts of medical or non-medical electrical equipment in the patient environment and the patient simultaneously, such as USB connector, VGA connector or other signal input/output connectors.
- 43 SHOCK HAZARD Don't connect electrical equipment, which has not been supplied as a part of the system, to the multiple portable socket-outlet supplying the system.
- 44 SHOCK HAZARD Don't connect electrical equipment, which has been supplied as a part of the system, directly to the wall outlet when the non-medical equipment is intended to be supplied by a multiple portable socket-outlet with an isolation transformer.
- 45 The equipment can provide protective means to prevent the patient from being burned when used with HF SURGICAL EQUIPMENT. The equipment can protect against the effects of the discharge of a defibrillator. Use only EDAN-approved accessories.
- 46 When the monitor is used with HF surgical equipment, the transducer and the cables must be avoided from conductive connection to the HF equipment. This is to protect against burns to the patient.
- 47 To protect the monitor from damage during defibrillation, for accurate measurement information and to protect against noise and other interference, use only accessories specified by EDAN.
- 48 No modification of this equipment is allowed without authorization of the manufacturer. If this equipment is modified, appropriate inspection and testing must be conducted to ensure continued safe operation.
- 49 Operation of the equipment exceeding specified physiological signal or the operational specification may cause inaccurate results.

50 Portable RF communications equipment (including peripherals such as antenna cables and external antennas) should be used no closer than 30 cm (12 inches) to any part of the monitor, including cables specified by the manufacturer. Otherwise, degradation of the performance of this equipment could result.

CAUTION

- 1 Electromagnetic Interference Ensure that the environment in which the patient monitor is installed is not subject to any sources of strong electromagnetic interference, such as radio transmitters, mobile telephones, microwaves, etc.
- 2 Keep the environment clean. Avoid vibration. Keep it far away from corrosive medicine, dust area, high temperature and humid environment.
- 3 Do not immerse transducers in liquid. When using solutions, use sterile wipes to avoid pouring fluids directly on the transducer.
- 4 Do not use autoclave or gas to sterilize the monitor, recorder or any accessories.
- 5 The device and reusable accessories may be sent back to the manufacturer for recycling or proper disposal after their useful lives.
- 6 Disposable devices are intended for single use only. They should not be reused as performance could degrade or contamination could occur.
- 7 Remove a battery whose life cycle has expired from the monitor immediately.
- 8 Avoid liquid splashing on the device.
- 9 To ensure patient safety, use only parts and accessories manufactured or recommended by EDAN.
- 10 Before connecting the monitor to the AC power, make sure the voltage and the power frequency are consistent with the requirements indicated on the device label or in this user manual.
- 11 Protect the device against mechanical damage resulting from falls, impacts, and vibration.
- 12 Do not touch the touch screen with a sharp object.
- 13 A ventilated environment is required for monitor installation. Do not block up the ventilation grille at the back of the device.
- 14 The device must be connected to the ground to avoid the signal interference.
- 15 Poor connection might be caused by frequently plugging and unplugging the power cord. Check the power cord regularly and replace it in time.
- 16 To protect eyes from damage, don't look directly at supplementary light for long time.

NOTE:

- 1 The monitor can only be used on one patient at a time.
- 2 This monitor is not a device for treatment purposes.

- 3 Position the device in a location where the operator can easily see the screen and access the operating controls.
- 4 If the monitor gets damp or liquid pours on the monitor, please contact the service personnel of EDAN.
- 5 The pictures and interfaces in this manual are for reference only.
- 6 Regular preventive maintenance should be carried out every two years. You are responsible for any requirements specific to your country.
- 7 It is recommended to format the USB flash drive to the FAT file type via PC prior to use.
- 8 When there's measurement beyond range, invalid measurement or no measurement value, it will display -?-.
- 9 The materials with which the patient or any other person can come into contact conform to the standard of EN ISO 10993-1: 2013.
- 10 In normal use, the operator shall stand in front of the monitor.

1.2.1 Protecting Personal Information

Protecting personal health information is a major component of security strategy. To protect the personal information and ensure the proper device performance, the user should take necessary precautions in accordance with local laws and regulations and institution's policies. EDAN recommends health care organizations or medical institutions to implement a comprehensive and multifaceted strategy to protect the information and systems from internal and external security threats.

To ensure the patients' safety and protect their personal health information, the user should implement security practices or measures that include:

- 1. Physical safeguards physical safety measures to ensure that unauthorized personnel do not have access to the monitor.
- 2. Operational safeguards safety measures during operation.
- 3. Administrative safeguards safety measures in management.
- 4. Technical safeguards safety measures in technical field.

CAUTION

- 1 The access/operation of the monitor is restricted to authorized personnel only. Assign only staff with a specific role the right to use the monitor.
- 2 Ensure that all device components maintaining personal information (other than removable media) are physically secure (i.e. cannot remove without tools).
- 3 Ensure that the data are deleted after the patient is discharged. (Refer to Section 22.4.5 *Deleting Data Stored in the Storage Device*).

CAUTION

- 4 Ensure that the monitor is connected only to the device authorized/approved by EDAN. Users should operate all EDAN deployed and supported monitors within EDAN authorized specifications, including EDAN approved software, software configuration, security configuration, etc.
- 5 Protect all the passwords to prevent unauthorized changes.
- 6 Anti-virus measures such as USB device virus scanning should be carried out prior to using USB flash drive.
- 7 Firewalls and/or other security devices should be in place between the medical system and any externally accessible systems. It's recommended to use Windows defender firewall or any other firewall that can defend against Dos and DDos attacks, and keep it up to date.
- 8 Dos and DDos protection of the router or switch must be turned on for defensing against attacks.
- 9 When the monitor is returned for maintenance, disposed of, or removed from the medical institution for other reasons, it is necessary to ensure that all patient data are removed from the monitor. (Refer to Section 22.4.5 *Deleting Data Stored in the Storage Device*).
- 10 When building the networking environment: 1) If a wireless router is used, please turn on the MAC address filtering function of the wireless router and add the MAC address of the monitor to the rule list. The wireless router only allows devices in the rule list to access the wireless network. 2) It is suggested to build a VLAN, assign the LAN ports where the approved switch port, monitor and MFM-CMS are into the same VLAN, and isolate it from other VLANs.
- 11 Please protect the privacy for the information and the data displayed on the screen, and for the information and the data stored in the monitor.
- 12 To avoid malicious tampering and theft of data transmitted by the network, it is recommended to switch on the encryption function. After the encryption function is turned on (it is set to on by default), the monitor will authenticate the accessed MFM-CMS devices and encrypt the transmitted data to ensure the security.

NOTE:

Log files generated by the monitor are used for system troubleshooting and do not contain protected medical data.

1.3 Explanation of Symbols on the Monitor

DEFIBRILLATION-PROOF TYPE CF APPLIED PART

2	Ţ	Caution
3	MR	MR Unsafe - Keep away from magnetic resonance imaging (MRI) equipment
4	\downarrow	Equipotential grounding
5	\sim	Alternating Current
6	ċ⁄ ⊚	Power Supply switch
7	SN	SERIAL NUMBER
8	뫔	Network port
9	€	USB (Universal Serial Bus) Connection
10	*/ *	Bell cancel – AUDIO PAUSED/OFF
11		NIBP measurement
12	<u>~</u>	Trend
13	\boxtimes	Picture freeze
14		Menu
15	→	Video output
16	业	Defibrillator synchronization/Signal output port
17	\rightarrow	Output
18	M	Date of manufacture
19		MANUFACTURER
20	P/N	Part Number

21		General symbol for recovery/recyclable
22	Z	Disposal method
23	Ţ i	Operating instructions
24		Refer to User Manual (Background: Blue; Symbol: White)
25	<u>^</u>	Warning (Background: Yellow; Symbol & outline: black)
26	<	Gas inlet
27	<u></u> →	Gas outlet (evac)
28	IPX1	Ingress Protection IPX1 (Protected against vertically falling water drops)
29	Rx Only	Caution: Federal (U.S.) Law restricts this device to sale by or on the order of a physician.
30	((⊙))	Non-ionizing electromagnetic radiation
31	Contains FCC ID	Federal Communications Commission: Contains FCC ID: SMQV1102EDAN
32	②	Do not reuse
33	<u> </u>	This way up
34		Fragile
35	Ť	Keep away from rain
36		Stacking limit by number
37	(*)	Handle with care

38	X	Do not step on		
39	(€ ₀₁₂₃	CE marking		
40	EC REP	AUTHORISED REPRESENTATIVE EUROPEAN COMMUNITY	IN	THE

NOTE:

The user manual is printed in black and white.

Chapter 2 Installation

NOTE:

The monitor settings must be configured by the authorized hospital personnel.

2.1 Initial Inspection

Before unpacking, check the packaging and ensure that there are no signs of mishandling or damage. If the shipping cartons are damaged, contact the carrier for compensation and package them again.

Open the package carefully and remove the monitor and accessories. Check that the contents are complete and that the correct options and accessories have been delivered.

If you have any question, please contact your local supplier.

2.2 Mounting the Monitor

Place the monitor on a flat, level surface, mount it on a wall or install it on a trolley. For detailed information about how to install the wall mount and trolley for the monitor, please refer to the *Wall Mounting Bracket Assembly Instruction* and *Trolley Installation Guide*.

WARNING

The wall mounting bracket can be fixed only on a concrete wall.

2.3 Connecting the Power Cable

Connection procedure of the AC power line is listed below:

- 1. Make sure the AC power supply complies with the following specifications: $100 \text{ V}-240 \text{ V}\sim$, 50 Hz/60 Hz.
- 2. Connect the power cord provided with the monitor. Connect the power cord to connector of the monitor. Connect the other end of the power cord to a grounded power outlet.

NOTE:

- 1 Connect the power cable to the socket specialized for hospital use.
- 2 Only use the power cable supplied by EDAN.

2.4 Checking the Monitor

Make sure there is no damage on the measurement accessories and cables. Then turn on the monitor, check whether the monitor can start normally. Make sure all alarm lamps light up and the alarm sound is heard when turning on the monitor.

WARNING

If any sign of damage is detected, or the monitor displays some error messages, do not use it on any patient. Contact Customer Service Center immediately.

NOTE:

- 1 Check all the functions of the monitor and make sure that the monitor is in good status.
- 2 If rechargeable batteries are provided, charge them after using the device every time, to ensure the electric power is enough.
- 3 After long-time continuous running, please restart the monitor to ensure the monitor's steady performance and long lifespan.

2.5 Checking the Recorder

If your monitor is equipped with a recorder, open the recorder's door to check if paper is properly installed in the slot. If no paper exists, refer to Chapter *Recording* for details.

2.6 Setting Date and Time

To set the date and time:

- 1. Select Menu > Maintenance > User Maintain > Date/Time Setup.
- 2. Adjust the **Date Format** and **Clock Format** based on the user's habit.
- 3. Set the correct time of year, month, day, hour, min and sec.

NOTE:

- 1 If the system is not used for a longer period of time, its system time may be inaccurate. In this case, reset the system time after powering on.
- 2 If the system time cannot be saved and resumes the default value after restart, contact the service department of EDAN to replace the button cell in main board.
- 3 The default clock format is 24 hours. When **Clock Format** is set to 12 hours, please select AM or PM according to actual situation.

2.7 Handing Over the Monitor

If you are handing over the monitor to the end-users directly after configuration, make sure that it is in the monitoring mode.

The users must be adequately trained to use the monitor before monitoring a patient. To achieve this, they should have access to, and read, the following documentation delivered with the monitor:

- User Manual (this book) for full operating instructions.
- Quick Reference Card for quick reminders during use.

2.8 FCC Statement

This equipment has been tested and found to comply with the limits for a Class B digital device, pursuant to part 15 of FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates and can radiate radio frequency energy and, if not installed and used in accordance with the instructions, may cause harmful interference to radio communications. However, there is no guarantee that

interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which can be determined by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- 1. Reorient or relocate the receiving antenna.
- 2. Increase the separation between the equipment and receiver.
- 3. Connect the equipment into an outlet on a circuit different from that to which the receiver is connected.
- 4. Consult the dealer or an experienced radio/TV technician for help.

This device complies with Part 15 of FCC Rules.

Operation is subject to the following two conditions:

- 1. This device may not cause harmful interference, and
- 2. This device must accept any interference received, including interference that may cause undesired operation.

NOTE:

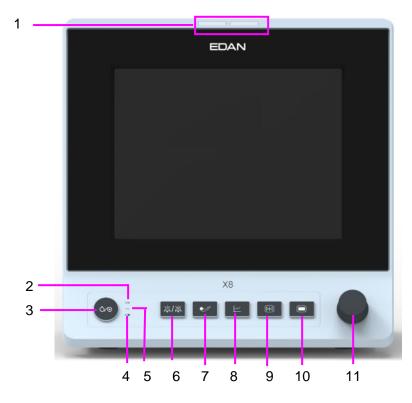
The manufacturer is not responsible for any radio or TV interference caused by unauthorized modifications to this equipment. Such modifications could void the user's authority to operate this equipment.

2.9 FCC RF Radiation Exposure Statement

This equipment complies with FCC RF radiation exposure limits set forth for an uncontrolled environment. This equipment should be installed and operated with a minimum distance of 20 centimeters between the radiator and your body.

Chapter 3 Basic Operation

This manual is for clinical professionals using the X8 X10 and X12 patient monitors. Unless otherwise specified, the information here is valid for all the above products.

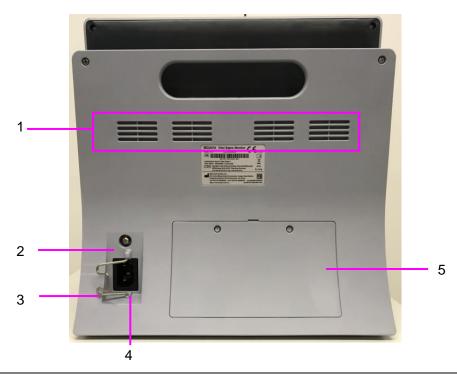

This user manual describes all features and options. Your monitor may not have all of them; they are not all available in all geographies. Your monitor is highly configurable. What you see on the screen, how the menus appear and so forth, depend on the way it has been tailored for your hospital and may not be exactly as shown here.

You may frequently use the follow functions:

- ECG monitoring (Refer to *Monitoring ECG* for more information.)
- SpO₂ monitoring (Refer to *Monitoring SpO*₂ for more information.)
- PR monitoring (Refer to *Monitoring PR* for more information.)
- NIBP monitoring (Refer to *Monitoring NIBP* for more information.)
- Alarm (Refer to *Alarms* for more information.)

3.1 Overview

3.1.1 Front View


Alarm indicator — when an alarm occurs, the alarm indicator will light or flash. The color of light represents the alarm level.

Power supply indicator

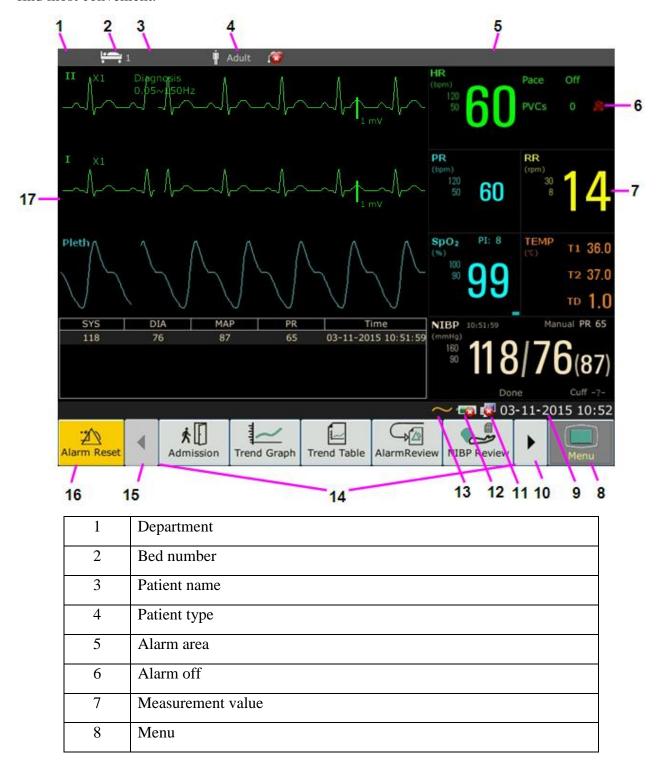
Power supply switch — when the monitor is connected to the AC power supply, press the key to turn the monitor on. When the monitor is turned on, press the key to turn the

	monitor off.
4	Battery indicator, refer to Section Battery Power Indicator for details.
5	Alternating current indicator
6	Mute —Press it to suspend the output of all audible alarm signals. Upon the configuration, pressing this button to pause or turn off the audio alarm. Further information can be found in the section <i>Audio Alarm Paused</i> and section <i>Audio Alarm Off</i> .
7	Start / Stop NIBP measurement — Press this button to inflate the cuff and start blood pressure measurement. During the measurement, press the button to stop the measurement.
8	Trend Key — Press this button to enter trend table review interface.
9	Start / Stop Recording — Press this button to start a real-time recording. During the recording, press this button again to stop recording.
10	Menu — Press this button to return to the main interface when there is no menu open, press it again to exit.
11	Rotary Knob (hereinafter called knob) — The user can rotate the knob clockwise or anticlockwise. This operation can make the highlighted item shift up, down, left or right to choose the desired item. Remember, when using the knob, rotate this button to highlight, and press it to select the item.

3.1.2 Rear View

	1	Heat sink
2	2	Equipotential grounding terminal, if the monitor or other processing unit are used in internal examinations on the heart, ensure that the room incorporates an equipotential grounding system to which the monitor and other processing unit have separate

	connection.
3	Power cable safety latch. Used to prevent the power cable from loosing or falling. Place the latch on the power cable and press it down firmly to ensure that it secures the power cable.
4	Power supply interface
5	Battery door


3.1.3 Side View

1	Sensor interface
2	CO ₂ water trap
3	USB interface
	Nurse call / analog output/ defibrillator synchronization port.
4	Nurse call port: it connects the monitor to the hospital's nurse call system. Alarms indications are alerted through the nurse call system if configured to do so.
4	Analog output: the monitor outputs the waveform through the port.
	Defibrillator synchronization: the monitor outputs the defibrillator synchronization signal through the port.
E	Network interface, it connects the monitor to the central monitoring system via standard
5	network cable, which enables MFM-CMS and the monitor to achieve bidirectional communication.
6	VGA output

3.2 Operating and Navigating

Everything you need to operate the monitor is contained on its screen. Almost every element on the screen is interactive. Screen elements include measurement data, waveforms, screen keys, information fields, alarms fields and menus. The configurability of the monitor means that often you can access the same element in different ways. For example, you might be able to access an item through its on-screen setup menu, via a hard key, or via a shortcut key. The User Manual always describes how to access items via an on-screen menu. You may use whichever way you find most convenient.

9	Date and time
10	Scroll right to display more shortcut keys
11	Networking symbol
12	Battery status symbol
13	AC power supply symbol
14	Shortcut key area
15	Scroll left to display more shortcut keys
16	Alarm reset key
17	Parameter waveform

3.2.1 Using Keys

The monitor has four different types of keys. If the key sound is enabled, the monitor gives a normal key sound when the operation is valid.

3.2.1.1 Permanent Keys

A permanent key is a graphical key that remains on the screen all the time to give you fast access to functions.

To display the main setup menu.

To reset the alarm.

3.2.1.2 Shortcut Keys

A shortcut key is a configurable graphical key, located at the bottom of the main screen. It gives you fast access to functions. The selection of shortcut keys available on your monitor depends on your monitor configuration and on the options purchased. You can select the shortcut keys those need to be displayed on the main screen through **Menu** > **Maintenance** > **User Maintain** > **Shortcut Setup**. You can adjust the shortcut key sequence as need.

Perform a 12-lead analysis

Switch to the standard screen

Exit from 12-lead analysis

Switch to the OxyCRG screen

Access the 12-lead review

Switch to the large font screen

Perform 12-lead record (in 12-lead interface)

Set the module switch

Admit a patient

Change the key volume

3.2.1.3 Hardkeys

A hardkey is a physical key on a monitoring device, such as the freeze key on the front panel. Refer to the illustration in *Main Unit* for more information.

3.2.1.4 Pop-up Keys

Pop-up keys are task-related graphical keys that appear automatically on the screen when required. For example, the confirmation pop-up key appears only when you need to confirm a change.

3.3 Operating Mode

3.3.1 Demo Mode

To change the operating mode into the demo mode, please refer to the following procedure:

Select **Menu** > **Common Function**, then choose **Demo Mode** from the popup interface and input password **3045**.

To exit **Demo Mode**, select **Menu** > **Common Function** > **Demo Mode**.

Demo Mode is for demonstration purposes only. You must not change into Demo Mode during monitoring. In Demo Mode, all stored trend information is deleted from the monitor's memory.

3.3.2 Standby Mode

To enter into standby mode, select Menu > Common Function > Standby, or press the shortcut

key on the screen directly, the monitor enters into standby mode after user's confirmation.

In standby mode:

- 1. The monitor stops monitoring patients and stores previous monitoring data.
- 2. The monitor won't respond to all alarms and prompts, except Battery Low alarm.
- 3. Audio alarm paused status discontinues. Audio alarm off, alarm off, alarm reset and alarm latch status are not influenced.
- 4. All recording and printing tasks will stop.
- 5. MFM-CMS won't update monitoring data, and will display monitor's standby mode. If network is disconnected, monitor will make request for connection.

The monitor exits standby mode in any of the conditions:

- 1. The user clicks anywhere on the screen or presses any key (except Power ON/OFF key).
- 2. Battery Low alarm occurs.

After exiting standby mode, the monitor resumes monitoring, including parameter monitoring, storage and alarm; users need to press Recorder shortcut key to restart recording.

NOTE:

The monitor is unable to enter into standby mode when exporting data.

3.3.3 Night Mode

To switch to night mode, you may:

- Select the shortcut key on the main screen, or
- Select Menu > Common Function > Night Mode.

NOTE:

In night mode, the sound of key, heart beat and pulse is muted; the alarm volume and screen brightness are down to their minimum; the settings including key volume, beat volume, PR volume, alarm volume and screen brightness are unavailable.

3.3.4 Privacy Mode

Only if the monitor is connected and admitted by MFM-CMS, the privacy mode can be activated. To enter into privacy mode, you can select **Menu** > **Maintenance** > **User Maintain** > **Shortcut**

Setup > **Privacy Mode** (it is defaulted to be off). Press the shortcut key on the screen, the monitor enters into privacy mode after user's confirmation.

In privacy mode:

- 1. The screen displays message: **Privacy mode** and **Patient is in monitoring without audio** alarm and alarm indicator lighting. Please click screen or hard key to exit.
- 2. Monitoring data, alarm information, stored data and monitor status are transmitted to MFM-CMS.
- 3. Audio alarm paused status discontinues. Audio alarm off, alarm off, alarm reset and alarm latch status are not influenced.

The monitor exits privacy mode in any of the conditions:

- 1. The user clicks anywhere on the screen or presses any key (except Power ON/OFF key).
- 2. Battery Low alarm occurs.
- 3. The monitor is disconnected with MFM-CMS.

NOTE:

The monitor is unable to enter into privacy mode when exporting data.

3.3.5 NFC Mode

NFC mode is designed when users need to constantly observe HR physiological alarm. In NFC mode, the HR physiological alarm is automatically or always switched on, and user cannot turn off it. To configure NFC mode, select **Menu** > **Maintenance** > **User Maintain** > **Alarm Setup** > **NFC Mode**, set it to **On** or **Off**. NFC mode is off by default.

In NFC mode:

- 1. The HR physiological alarms are always on and can't be set to off by the user.
- 2. The user can't turn off the audio alarm permanently.
- 3. The audio alarm off status will be finished and the monitor enters normal alarm response status. **Pause Time** will automatically switch to **120 s**, which can be set to **60 s**, **120 s**, or **180 s** manually.
- 4. The audio alarm paused status is not affected by entering NFC mode.
- 5. Prompt information **NFC Mode On** is displayed.
- 6. Monitoring data, alarm information, stored data and monitor status are transmitted to MFM-CMS.

NOTE:

NFC mode and standby mode can't coexist. When the monitor enters the standby mode, the NFC mode will automatically pause. After exiting the standby mode, the monitor will

automatically resume the NFC mode.

After exiting NFC mode:

- 1. The HR physiological alarms are still on and can be set to off by the user.
- 2. **Pause Time** keeps no change and the user can set it to **Permanent**.
- 3. Prompt information **NFC Mode On** gets disappeared.

3.4 Changing Monitor Settings

3.4.1 Adjusting Screen Brightness

To change the screen brightness:

- Select the shortcut key 1.
- on the screen directly, or
- 2. Select Menu > Common Function > Brightness, and select the appropriate setting for the screen brightness. 10 is the brightest, 1 is the least bright.

3.4.2 Changing Date and Time

To change the date and time, please refer to Section Setting Date and Time.

WARNING

Change to date and time will influence the storage of trend data.

3.5 Adjusting Volume

3.5.1 Adjusting Key Volume

The key volume is the volume you hear when you select any field on the monitor screen or when you turn the knob. To adjust the key volume:

- Select the shortcut key on the screen directly, or 1.

Select Menu > System Setup > Key Volume, then select the appropriate setting for the key 2. volume: five bars represent the maximum volume and one bar represents the minimum volume. If none of bars are selected, the key volume will be off.

3.5.2 Adjusting Alarm Volume

To change the alarm volume:

- Select the shortcut key on the screen directly, or
- Select Menu > Alarm Setup and select the desired setting for the AlarmVolume item: five bars represent the maximum volume and one bar represents the minimum volume.

3.5.3 Adjusting Beat Volume

Beat volume is from HR or PR, depending on your setting of the beat source. To change the beat volume:

- 1. Select the shortcut key on the screen directly, or
- 2. Select **ECG Setup** > **Beat Volume**, then select the appropriate setting for the beat volume: five bars represent the maximum volume and one bar represents the minimum volume. If none of bars are selected, the beat volume will be off. Beat frequency has positive correlation with measurement value.

3.6 Checking Your Monitor Version

To check the monitor version, please select **Menu** > **Common Function** > **About** to check the monitor software revision.

3.7 Networked Monitoring

Your monitor can be connected to the wired network and the wireless network. If the monitor is networked, a network symbol is displayed on the screen.

NOTE:

- 1 Be aware that some network-based functions may be limited for monitors on wireless networks in comparison to those on wired networks.
- 2 When selecting dynamic IP mode, please check the IP address from MFM-CMS.

3.8 Setting Languages

To change the language, please:

- Select Menu > Maintenance > User Maintain, then type the correct password ABC into the displayed interface.
- 2. Select the **Language** option on the popup interface to open the language list.
- 3. Select the desired language from the list. To make the change validate, please restart the monitor.

3.9 Calibrating Screens

To calibrate the screen, please refer to the following steps:

- 1. Select Menu > Maintenance > User Maintain, input the user password ABC, and select TouchScr Calibration on the User Maintain menu. User can also enter into calibration interface through pressing shortcut key F9 in connected keyboard.
- 2. The symbol # appears on the screen.
- 3. Click on the central point of the symbol

NOTE:

- 1 If calibration file is lost or damaged, the monitor will automatically enter into screen calibration interface.
- 2 In the screen calibration interface, the screen turns gray and no measurement data can be displayed.

3.10 Disabling the Touch Screen

The user can disable touch screen operation by selecting and holding the permanent key for three seconds. A message of **Screen Locked** and the symbol will be displayed at the bottom of screen. To enable the touch screen operation, select the symbol by using the knob.

3.11 Using the Barcode Scanner

To enter the barcode setup menu, please select **Menu > Maintenance > User Maintain**. After entering the required password **ABC**, select **Other Setups > BarCode Setup**. Then the user can set serial No, last Name, first Name and so on.

User can also check relevant scanner device information in **User Maintain** > **Scanner Management**.

If the scanner is connected for the first time, the monitor will pop up a confirmation message to ask user whether the new USB device is added as scanner. Choose **Yes** to add as scanner, choose **No** to add as USB device. Please refer to chapter *Accessories* for the recommended scanner.

NOTE:

The start and end code should be set before using scanner to update patient, otherwise the barcode can't be recognized normally. After setting start and end code, user should also set male code and female code to distinguish the gender.

Chapter 4 Alarms

The alarm information here applies to all measurements. Measurement-specific alarm information is discussed in the sections of individual measurements.

WARNING

A potential hazard can exist if different alarm presets are used for the same or similar equipment in any single area, e.g. an intensive care unit or cardiac operating room.

4.1 Alarm Category

The monitor provides two types of alarms: physiological alarms and technical alarms. Also, the monitor provides prompts.

4.1.1 Physiological Alarms

If one or several physiological parameters of the currently monitored patient exceed the predefined alarm limit, the monitor will give an alarm, and this type of alarm is called physiological alarms. About the detailed alarm information, please refer to the Section *Physiological Alarm Information*.

4.1.2 Technical Alarms

If one or several technical status of the device is in abnormal status, the monitor will give an alarm. And this type of alarm is called technical alarms. Technical alarms can't be disabled. About the detailed alarm information, please refer to Section *Technical Alarm Information*.

4.1.3 Prompts

The monitor can give the character indication of monitoring process or other functions. And this character is called prompts. About the detailed alarm information, please refer to Section *Prompts*.

4.2 Selecting Alarm Tone Type

The user can select the alarm tone type as desired.

- 1. Select Menu > Maintenance > User Maintain, and enter the required password ABC.
- 2. If configured, select **Alarm Setup**, and set **Alarm Tone** to **Standard** or **Mode 1**.
 - ◆ **Standard**: Standard alarm sound according to IEC 60601-1-8.
 - ◆ Mode 1: User customized alarm sound according to clinical applications.

4.3 Alarm Levels

In terms of severity, the device's alarm levels can be classified into three categories: high level alarms, medium level alarms and low level alarms.

1. High level alarms

A high level alarm intensively warns the operator of a high priority alarm condition which requires immediate operator response. Failure to respond to the cause of the alarm condition is likely to result in death or irreversible injury of the patient.

2. Medium level alarms

A medium level alarm warns the operator of a medium priority alarm condition which requires prompt operator response. Failure to respond to the cause of the alarm condition is likely to result in reversible injury of the patient.

3. Low level alarms

A low level alarm reminds the operator of a low priority alarm condition which requires response. And the response time for a low priority alarm condition can be greater than that for a medium priority alarm condition. Failure to respond to the cause of the alarm condition is likely to result in discomfort or reversible minor injury of the patient.

The high/medium/low-level alarms are indicated by the system in following different ways:

Standard:

Alarm Level	Prompt
	Mode is "DO-DO-DO-DO-DO-DO-DO-DO-DO", which is
High	triggered once every 10 seconds. The alarm indicator flashes in red, with
High	frequency of 1.4 Hz \sim 2.8 Hz. The alarm message flashes with red
	background, and the symbol *** is displayed at the alarm area.
	Mode is "DO-DO", which is triggered once every 25 seconds. The alarm
Medium	indicator flashes in yellow, with frequency of 0.4 Hz~0.8 Hz. The alarm
Medium	message flashes with yellow background, and the symbol ** is displayed at
	the alarm area.
	Mode is "DO-", which is triggered once every 30 seconds. When
	physiological alarm is triggered, the alarm indicator is constantly yellow.
Low	While for technical alarm, the alarm indicator is constantly blue. The alarm
	message flashes with yellow background, and the symbol * is displayed at the
	alarm area.

Mode 1:

Alarm Level	Prompt
	Mode is "Di-Di-Di-Di-Di", which is triggered once every 10 seconds. The
High	alarm indicator flashes in red, with frequency of 1.4 Hz~2.8 Hz. The alarm
Ingn	message flashes with red background, and the symbol *** is displayed at the
	alarm area.
	Mode is "Di-Di-Di", which is triggered once every 25 seconds. The alarm
Medium	indicator flashes in yellow, with frequency of 0.4 Hz~0.8 Hz. The alarm
	message flashes with yellow background, and the symbol ** is displayed at
	the alarm area.

Alarm Level	Prompt
Low	Mode is "Di-", which is triggered once every 30 seconds. When physiological alarm is triggered, the alarm indicator is constantly yellow. While for technical alarm, the alarm indicator is constantly blue. The alarm message flashes with yellow background, and the symbol * is displayed at the alarm area.

The sound pressure range for standard audible alarm signals is from 45 dB to 85 dB, and for Mode 1 is from 30 dB to 85 dB.

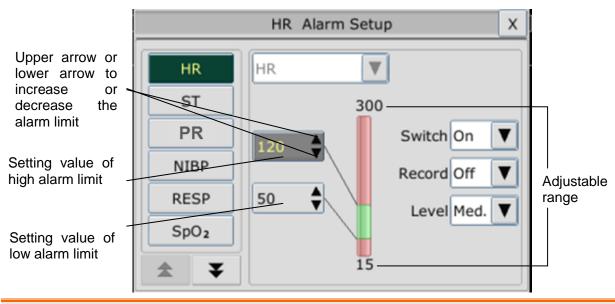
When different level alarms occur at the same time, alarm sound and alarm indicator prompt the highest level alarm, alarm messages display in turn.

The parameter area has two flash methods to prompt alarms: background flash and text flash. User can select one method from **Menu** > **Alarm Setup** > **Visual Effect**:

- 1. **Text Flash**: text flashes with frequency of 1 Hz.
- 2. **Background Flash**: background flashes with frequency of 1 Hz.

WARNING

- 1 Do not rely exclusively on the audible alarm system for patient monitoring. Adjustment of alarm volume to a low level or off during patient monitoring may result in patient danger. Remember that the most reliable method of patient monitoring combines close personal surveillance with correct operation of monitoring equipment.
- 2 Ensure the volume is properly set up. When the sound pressure of audible alarm is below or equivalent to the ambient noise, it may be difficult for the operator to distinguish the audio alarm.
- 3 During monitoring, please avoid quick and frequent illegal operations. If the monitor suddenly becomes stuck and produces a harsh prompt sound, the user should press the switch button to shut down the monitor.

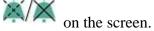

4.4 Controlling Alarm

4.4.1 Setting Parameter Alarm

Parameter alarm settings including alarm switch, alarm record, alarm level and alarm limit are available on the respective alarm setup menu for each parameter. To access the menu for

parameter alarm settings, use the shortcut key or select **Menu** > **Alarm Setup**, and then click **Alarm Options** to open the menu shown below for alarm settings of each parameter. Also, you can access this menu via the respective parameter setup menu.

When alarm switch is off, the parameter alarm off icon will be displayed in the corresponding parameter area.


WARNING

- When the alarm is set to **Off**, the monitor won't give an alarm prompt even if an alarm occurs. In order to avoid endangering the patient's life, the user should use this function cautiously.
- 2 Prior to monitoring, make sure that the alarm limit settings are appropriate for your patient.
- 3 Setting alarm limits to extreme values may cause the alarm system to become ineffective. It is recommended to use the default settings.
- 4 In HR alarm limit setting process, the bottom will display ExtremeTachy or ExtremeBrady threshold value that has been set. HR high alarm limit should be less than or equal to ExtremeTachy threshold value, and HR low alarm limit should be more than or equal to ExtremeBrady threshold value.

4.4.2 Audio Alarm Paused

You can temporarily prevent alarms from sounding by pressing the hardkey on the fr

panel or pressing shortcut key

You can set the alarm pause time as desired. The default alarm pause time is 120 s.

- 1. Select **Menu** > **Maintenance** > **User Maintain**, and enter the required password **ABC**.
- 2. Select Alarm Setup, and set Pause Time to 60 s, 120 s, or 180 s.

When alarms are paused,

- ◆ The audio alarm is turned off, and no alarms are sounding.
- ◆ The visual alarm indications are still displayed.

- ◆ The monitor displays the audio alarm paused icon <a>A.
- ◆ The monitor displays the remaining pause time in seconds with red background.

When the alarm pause time expires, the audio alarm paused status is automatically terminated and alarm is sounding. You can also terminate the alarm paused status by pressing the hardkey

NOTE:

If a new alarm occurs during the audio alarm paused period, the new alarm will not be sounding.

4.4.3 Audio Alarm off

Set Pause Time to Permanent, press hardkey or shortcut key, the monitor displays information: please confirm whether to activate audio alarm off function? Click Yes, the monitor will enter into audio alarm off status. Click No, the monitor will keep current status.

- The audio alarm is turned off, and no alarms are sounding.
- The visual alarm indications are still displayed.

Remind signal: Audio alarm off symbol Audio Alarm off on a red colored background are displayed with an interval of 2 s during the audio alarm off status.

Pressing the hardkey or shortcut key again can resume the audio alarm

NOTE:

If a new alarm occurs during the audio alarm off period, the new alarm will not be sounding.

4.4.4 Alarm Reset

Select the shortcut key on the screen directly. When the alarm is reset,

- No alarms are sounding until a new alarm occurs.
- ◆ As for the active alarms, the visual alarm indications are still displayed.
- ◆ All latching alarms are cleared. If the alarm condition is no longer present, all alarm indications stop and the alarm is reset.
- It will not influence the configuration of physiological alarm off, audio paused, and audio off status.

NOTE:

If a new alarm occurs after the alarm is reset, the new alarm will be sounding.

4.5 Latching Alarms

To configure the alarm latching setting, select Menu > Maintenance > User Maintain > Alarm Setup and choose Alarm Latch which can be set to On or Off. When it is set to Off, alarm indications end when the alarm condition ends. When it is set to **On**, the visual alarm indication is still displayed after the alarm condition ends; meanwhile, the alarm time is also displayed for the latched alarm for your reference. The indication lasts until you acknowledge the alarm.

You can use the permanent key

Alarm Reset on the screen to acknowledge the latched alarm.

4.6 Disabling Sensor Off Alarms

To set sensor off alarm, please select Menu > Maintenance > User Maintain and enter the required password ABC. Then select Alarm Setup and set Sensor Off Alm from the pull-down

list. If it is set to On, and a sensor off alarm occurs, after pressing the hardkey

Alarm Reset the user can disable the audio alarm signal, however, the visual alarm permanent key indications are still displayed. If it is set to Off, and a sensor off alarm occurs, after pressing the

or permanent key Alarm Reset, sensor-off status will be announced with a prompt hardkey message. It means there's no audio alarm signal and alarm indicator, but prompt information displayed.

In Menu > Maintenance > User Maintain > Alarm Setup, SpO₂ Sensor Off and ECG Lead Off alarm level can be adjusted as **High**, **Med.** or **Low**. These alarm levels are set to **Low** by default.

4.7 Network Disconnected Alarms

To configure the network disconnected alarms, select Menu > Maintenance > User Maintain > **Alarm Setup** and choose **Disconnect Alarm** which can be set to **On** or **Off**. The alarm is off by default.

NOTE:

- When the monitor is connected with the central monitoring system, you must set **Disconnect Alarm** to **On**.
- 2 If **Disconnect Alarm** occurs during audio alarm paused or audio alarm off status, the monitor will prompt a sounding alarm with information of NetWork Disconnect. During the network disconnected status, activating audio alarm paused or audio alarm off function can disable the audio alarm signal of **Disconnect Alarm**.

4.8 Testing Alarms

When you switch the monitor on, the monitor will prompt a "Di" tone that means the audio in selftest is normal. Meantime, you must check that the alarm indicator lights are normal. This indicates that the visible and audible alarm indicators are functioning correctly. For further testing of individual measurement alarms, perform the measurement on yourself or use a simulator. Adjust alarm limits and check that appropriate alarm behavior is observed.

Chapter 5 Alarm Information

5.1 Physiological Alarm Information

WARNING

Physiological alarms including Asystole, Sustain VT, RESP APNEA, SpO₂ No Pulse, SpO₂ Desat and CO₂ APNEA cannot be turned off.

Message	Cause	Alarm Level
ECG		
HR High	HR measuring value is above the upper alarm limit.	User-selectable
HR Low	HR measuring value is below the lower alarm limit.	User-selectable
ST-X High	ST measuring value is above the upper alarm limit. (X stands for I, II, III, aVR, aVL, aVF, V, V1, V2, V3, V4, V5 or V6)	User-selectable
ST-X Low	ST measuring value is below the lower alarm limit.(X stands for I, II, III, aVR, aVL, aVF, V, V1, V2, V3, V4, V5 or V6)	User-selectable
PVCs High	PVCs measuring value is above the upper alarm limit.	User-selectable
Asystole	No QRS is detected for 4 consecutive seconds	High
V-Fib/V-Tach	4 consecutive seconds' fibrillation wave occurs; Or 5 consecutive ventricular beats, and ventricular HR ≥100 bpm.	
Run PVCs	$3 \le$ the number of consecutive PVCs < 5	
Couplet	2 consecutive PVCs	User-selectable
PVC Bigeminy	A dominant rhythm of N, V, N, V (N = supraventricular beat, V = ventricular beat) was detected.	User-selectable
PVC Trigeminy	A dominant rhythm of N, N, V, N, N,V	User-selectable
R on T	A type of single PVC under the condition that HR < 100, R-R interval is less than 1/3 the average interval, followed by a compensating pause of 1.25X the average R-R interval (the next R wave advances onto the previous T wave).	User-selectable
PVC	Single PVC detected in normal heartbeats, and the number of consecutive single PVC \geq 4 within 30 s.	User-selectable
Pacer not Capture	No QRS complex detected in 300ms after a pace pulse.	User-selectable

Message	Cause	Alarm Level
Pacer not Pacing	No pace pulse detected in 1.75 times RR interval after a QRS complex.	User-selectable
Tachy	Adult: RR interval for 5 consecutive QRS complex ≤ 0.5 s. Pediatric/neonatal: RR interval for 5 consecutive QRS complex ≤ 0.375 s.	User-selectable
Brady	Adult: RR interval for 5 consecutive QRS complex \geq 1.5 s. Pediatric/neonatal: RR interval for 5 consecutive QRS complex \geq 1 s.	User-selectable
Missed Beat	If HR < 120 bpm, no beats are detected for 1.75 times average RR interval; or if HR \geq 120 bpm, no beats are detected for one second.	User-selectable
Irr Rhythm	Consistently irregular heart rhythm	User-selectable
Vent Brady	5 consecutive ventricular beats, and ventricular HR < 20 bpm.	User-selectable
Vent Rhythm	5 consecutive ventricular beats, and 20 bpm \leq ventricular HR $<$ 40 bpm.	User-selectable
Sustain VT	The duration of ventricular tachycardia rhythm \geq the threshold value that has been set.	High
ExtremeTachy	$HR \ge Extreme Tachycardia threshold value that has been set.$	High
ExtremeBrady	$HR \leq Extreme$ Bradycardia threshold value that has been set.	High
V-Tach	5 consecutive ventricular beats and ventricular HR \geq 100 bpm.	High
Wide QRS Tachy	Meet tachycardia conditions, and QRS wave width \geq 160 ms.	User-selectable
Non-Sustain VT	$3 \le$ The number of consecutive ventricular beats < 5 , and ventricular HR ≥ 100 bpm.	User-selectable
Afib	The RR interval of normal beats must be irregular, and it can be seen that the obvious f or P waves do not exist.	User-selectable
Acc. Vent Rhythm	5 consecutive ventricular beats, and 40 bpm \leq ventricular HR $<$ 100 bpm.	User-selectable
Pause	No QRS is detected within the heartbeat pause threshold value that has been set.	User-selectable

Message	Cause	Alarm Level
Pauses/min High	The measurement value of Pause/min is greater than high alarm limit that has been set.	User-selectable
PVCs High	The measurement value of PVCs is greater than high alarm limit that has been set.	User-selectable
VEB	The delayed ventricular beats detected in normal heartbeats occur more than or equal to 3 times within 30 s.	User-selectable
Multiform PVCs	Different forms of ventricular premature beats are detected in 15 beats.	User-selectable
IPVC	The single ventricular premature beat between 2 sinus beats with normal interval occurs more than or equal to 3 times within 30 s.	User-selectable
PAC Bigeminy	The dominant rhythm of N, A, N, A, N, A, and the rhythm number exceeds the number of threshold value that has been set (N = supraventricular beat, A = atrial beat).	User-selectable
PAC Trigeminy	The dominant rhythm of N, N, A, N, N, A, N, N, A, and the rhythm number exceeds the number of threshold value that has been set.	User-selectable
Low Voltage (Limb)	None of the signal amplitudes of I, II and III leads exceeds that of the alarm threshold that has been set. PS: this alarm is available for 5, 6 or 10 electrodes only, not available for 3 leads.	User-selectable
RESP		
RESP APNEA	RESP can not be measured within the set apnea alarm delay time.	High
RR High	RR measuring value is above upper alarm limit.	User-selectable
RR Low	RR measuring value is below lower alarm limit.	User-selectable
SpO ₂		<u>, </u>
SpO ₂ High	SpO ₂ measuring value is above upper alarm limit.	User-selectable
SpO ₂ Low	SpO ₂ measuring value is below lower alarm limit.	User-selectable
SpO ₂ No Pulse	The signal of the measurement site is too weak due to insufficient blood supply and environmental factors, so the monitor can't detect the pulse signal.	High
SpO ₂ Desat	SpO ₂ measuring value is below the SpO ₂ Desat limit.	High
PR High	PR measuring value is above upper alarm limit.	User-selectable

Message	Cause	Alarm Level		
PR Low	PR measuring value is below lower alarm limit.	User-selectable		
TEMP	TEMP			
T1 High	Measuring value of T1 channel is above upper alarm limit.	User-selectable		
T1 Low	Measuring value of T1 channel is below lower alarm limit.	User-selectable		
T2 High	Measuring value of T2 channel is above upper alarm limit.	User-selectable		
T2 Low	Measuring value of T2 channel is below lower alarm limit.	User-selectable		
TD High	Measuring value of TD channel is above upper alarm limit.	User-selectable		
NIBP				
SYS High	SYS measuring value is above upper alarm limit.	User-selectable		
SYS Low	SYS measuring value is below lower alarm limit.	User-selectable		
DIA High	DIA measuring value is above upper alarm limit.	User-selectable		
DIA Low	DIA measuring value is below lower alarm limit. User-			
MAP High	MAP measuring value is above upper alarm limit.	User-selectable		
MAP Low	MAP measuring value is below lower alarm limit.	User-selectable		
PR (NIBP) High	PR measuring value from the NIBP module is above upper alarm limit.	User-selectable		
PR (NIBP) Low	PR measuring value from the NIBP module is below lower alarm limit. User-se			
IBP				
Art SYS High	Art SYS measuring value is above upper alarm limit.	User-selectable		
Art SYS Low	Art SYS measuring value is below lower alarm limit.	User-selectable		
Art DIA High	Art DIA measuring value is above upper alarm limit.	User-selectable		
Art DIA Low	Art DIA measuring value is below lower alarm limit.	User-selectable		
Art MAP High	Art MAP measuring value is above upper alarm limit.	User-selectable		
Art MAP Low	Art MAP measuring value is below lower alarm limit.	User-selectable		
PA SYS High	PA SYS measuring value is above upper alarm limit.	User-selectable		
PA SYS Low	PA SYS measuring value is below lower alarm limit.	User-selectable		
PA DIA High	PA DIA measuring value is above upper alarm limit.	User-selectable		

Message	Cause	Alarm Level
PA DIA Low	PA DIA measuring value is below lower alarm limit.	User-selectable
PA MAP High	PA MAP measuring value is above upper alarm limit.	User-selectable
PA MAP Low	PA MAP measuring value is below lower alarm limit.	User-selectable
CVP MAP High	CVP MAP measuring value is above upper alarm limit.	User-selectable
CVP MAP Low	CVP MAP measuring value is below lower alarm limit.	User-selectable
ICP MAP High	ICP MAP measuring value is above upper alarm limit.	User-selectable
ICP MAP Low	ICP MAP measuring value is below lower alarm limit.	User-selectable
LAP MAP High	LAP MAP measuring value is above upper alarm limit.	User-selectable
LAP MAP Low	LAP MAP measuring value is below lower alarm limit.	User-selectable
RAP MAP High	RAP MAP measuring value is above upper alarm limit.	User-selectable
RAP MAP Low	RAP MAP measuring value is below lower alarm limit.	User-selectable
P1 SYS High	P1 SYS measuring value is above upper alarm limit.	User-selectable
P1 SYS Low	P1 SYS measuring value is below lower alarm limit.	User-selectable
P1 DIA High	P1 DIA measuring value is above upper alarm limit.	User-selectable
P1 DIA Low	P1 DIA measuring value is below lower alarm limit.	User-selectable
P1 MAP High	P1 MAP measuring value is above upper alarm limit.	User-selectable
P1 MAP Low	P1 MAP measuring value is below lower alarm limit.	User-selectable
P2 SYS High	P2 SYS measuring value is above upper alarm limit.	User-selectable
P2 SYS Low	P2 SYS measuring value is below lower alarm limit.	User-selectable
P2 DIA High	P2 DIA measuring value is above upper alarm limit.	User-selectable
P2 DIA Low	P2 DIA measuring value is below lower alarm limit.	User-selectable
P2 MAP High	P2 MAP measuring value is above upper alarm limit.	User-selectable
P2 MAP Low	P2 MAP measuring value is below lower alarm limit.	User-selectable
CO_2		
EtCO ₂ High	EtCO ₂ measuring value is above upper alarm limit.	User-selectable
EtCO ₂ Low	EtCO ₂ measuring value is below lower alarm limit.	User-selectable
FiCO ₂ High	FiCO ₂ measuring value is above alarm limits.	User-selectable
CO ₂ APNEA	In the set apnea alarm delay time interval, no breath can be detected using CO ₂ module.	High
AwRR High	AwRR measuring value is above upper alarm limit.	User-selectable
AwRR Low	AwRR measuring value is below lower alarm limit.	User-selectable

Message	Cause	Alarm Level
C.O.		
TB High	TB measuring value is above upper alarm.	User-selectable
TB Low	TB measuring value is below lower alarm.	User-selectable

5.2 Technical Alarm Information

NOTE:

The ECG alarm information listed in the below table describes the electrode names in America. For the corresponding electrode names in Europe, please refer to the section *Installing Electrodes*.

Message	Cause	Alarm Level	Action Taken		
ECG	ECG				
ECG Lead Off	 The drive electrode or more than one ECG limb electrode falls off the skin; ECG cables fall off the monitor. 	Low	Make sure that all electrodes, leads and patient cables are properly connected.		
ECG LL Lead Off	ECG electrode LL falls off the skin or the ECG cable LL falls off the monitor.	Low			
ECG LA Lead Off	ECG electrode LA falls off the skin or the ECG cable LA falls off the monitor.	Low			
ECG RA Lead Off	ECG electrode RA falls off the skin or the ECG cable RA falls off the monitor.	Low			
ECG RL Lead Off	1) When electrode type is AUTO, ECG electrode RL falls off the skin, 5/6/10 electrodes switches to 3 electrodes; 2) When electrode type is AUTO, the ECG cable RA falls off the monitor, 5/6/10 electrodes switches to 3 electrodes.	Low			
ECG V Lead Off	ECG electrode V falls off the skin or the ECG cable V falls off the monitor.	Low			

Message	Cause	Alarm Level	Action Taken	
ECG V1 Lead Off	ECG electrode V1 falls off the skin or the ECG cable V1 falls off.	Low		
ECG V2 Lead Off	ECG electrode V2 falls off the skin or the ECG cable V2 falls off.	Low	Make sure that all electrodes, leads and	
ECG V3 Lead Off	ECG electrode V3 falls off the skin or the ECG cable V3 falls off.	Low		
ECG V4 Lead Off	ECG electrode V4 falls off the skin or the ECG cable V4 falls off.	Low	patient cables are properly connected.	
ECG V5 Lead Off	ECG electrode V5 falls off the skin or the ECG cable V5 falls off.	Low		
ECG V6 Lead Off	ECG electrode V6 falls off the skin or the ECG cable V6 falls off.	Low		
ECG Signal Exceeded	ECG measuring signal is beyond measuring range.	Low	Check lead connection and patient condition	
ECG Noise	ECG measuring signal is greatly interrupted.	Low		
ECG Comm Fail	ECG module failure or communication failure	High	Stop measuring function of ECG module, and notify biomedical engineer or manufacturer's service staff.	
RESP				
RESP Comm Fail	RESP module failure or communication failure	High	Stop measuring function of RESP module, and notify biomedical engineer or the manufacturer's service staff.	

Message	Cause	Alarm Level	Action Taken	
RESP Noise	RR cannot be measured due to patient movement.	Low	Check whether the RESP leads are well connected. Keep the patient calm for better monitoring.	
RR Exceed	RR measuring value is out of the measure range.	Medium	Check whether interference to the respiratory signal exists. And check whether the patient is breathing normally; breathing too rapidly or too slowly may endanger patient's life.	
RESP Cardiac Artifact	No RESP waveform can be detected due to apnea or shallow breathing of the patient.	High	Check whether the patient is breathing normally. Take measures to help the patient breathe normally when necessary. If the patient is breathing normally, try to adjust the electrode position on the patient in order to reduce the interference of cardiogenic artifact.	
SpO_2				
SpO ₂ Sensor Off	SpO ₂ sensor may be disconnected from the patient or the monitor.	Low	Make sure the sensor is well connected to the patient's finger or other parts. Make sure the monitor and cables are well connected.	

Message	Cause	Alarm Level	Action Taken
SpO ₂ Comm Fail	SpO ₂ module failure or communication failure	High	Stop using measuring function of SpO ₂ module, and notify biomedical engineer or manufacturer's service staff.
SpO ₂ Sensor Err	Malfunction in the SpO ₂ sensor or in the extension cable.	Low	Replace the SpO ₂ sensor or the extension cable.
SpO ₂ No Sensor	SpO ₂ sensor may be disconnected from the patient or the monitor.		Make sure the monitor and sensor are well connected, reconnect the sensor.
The pulse signal is too weak or the perfusion of the measurement site is too low. The SpO ₂ value and PR value might be inaccurate then.		Low	Reconnect the SpO ₂ sensor and change the measurement site. If problem exists, please notify biomedical engineer or manufacturer's service staff.
SpO ₂ Noisy Signal There is interference with SpO ₂ measurement signals due to patient movement, ambient light, electrical interference or else.		Low	Check the condition of patient and avoid patient movement; make sure the cable is well connected.
SpO ₂ Light Ambient light around the sensor is too strong.		Low	Reduce interference of the ambient light and avoid sensor's exposure to strong light.
NIBP			
NIBP Cuff Type Error	The cuff type used isn't consistent with the patient type.	Low	Confirm the patient type and change the cuff.

Message	Cause	Alarm Level	Action Taken
NIBP Comm Fail	NIBP module failure or communication failure	High	Stop using measuring function of NIBP module, and notify biomedical engineer or manufacturer's service staff.
NIBP Leak	NIBP Leak NIBP pump, valve, cuff or tube has a leakage. Low		Check the connections and the wrapped cuff to see whether they are all prepared well.
NIBP Excessive Pressure	Pressure has exceeded the specified upper safety limit.	Low	Measure again, if failure persists, stop measuring function of NIBP module and
NIBP Init Pressure High	The initial pressure is too high during measuring	Low	notify biomedical engineer or manufacturer's service staff.
NIBP Aux Excessive Pressure	Pressure has exceeded the second safety limit as specified.	High	Notify biomedical engineer or manufacturer's service staff.
NIBP Time Out	NIBP Time Out Measuring time has exceeded the specified time.		Measure again or use other measuring method.
NIBP Self Test Error	Sensor or other hardware errors.	Low	If failure persists, stop using measuring function of NIBP module and notify biomedical engineer or manufacturer's service staff.

Message	Cause	Alarm Level	Action Taken	
NIBP System Pressure Abnormality	Atmospheric pressure or system pressure is abnormal. The valve is occluded so that deflation is failed.	Low	Check whether the airway is occluded or pressure sensor works properly. If the problem still exists, contact your service personnel.	
NIBP System Failure	NIBP is not calibrated.	High	Contact your service personnel.	
NIBP Loose Cuff	Cuff is not properly wrapped or no cuff is connected.	Low	Properly wrap the cuff.	
NIBP Weak Signal	Cuff is too loose or patient pulse is too weak.	Low		
NIBP Range Exceeded	All of SYS, DIA and MAP values are beyond the measurement range.	High		
SYS(NIBP) Overrange	SYS (NIBP) value is beyond the measurement range.	High	Use other methods to measure blood pressure.	
DIA(NIBP) Overrange	DIA (NIBP) value is beyond the measurement range.	High	pressure.	
MAP(NIBP) Overrange	MAP (NIBP) value is beyond the measurement range.	High		
NIBP Interference	NIBP Interference Signal noise is too large or pulse rate is not regular due to the patient movement.		Make sure that the patient under monitoring is motionless.	
NIBP Leak Test Fail to deflate normall during the leak test, so NIB leak test cannot be finished.		Low	Test again. If the problem still exists, contact your service personnel.	
NIBP Pressure Low Maybe pre-inflation pressure can't block the vessel.		Low	Check if the cuff leak or cuff is properly wrapped.	
NIBP Pulse Abnormal	Arrhythmia is serious or pulse rate is not regular due to the patient movement.	Low	Make sure that the patient under monitoring is motionless.	

Message	Cause	Alarm Level	Action Taken	
NIBP Pulse Signal Weak	Pulse is too weak, and the detected signal is too weak Low leak or		Check if the cuff leak or cuff is properly wrapped.	
TEMP				
TEMP T1 Sensor Off	Temperature cable of TEMP channel may be disconnected from the monitor.	Low	Make sure that the cable is properly connected	
TEMP T2 Sensor Off	Temperature cable of TEMP channe2 may be disconnected from the monitor.	Low	Make sure that the cable is properly connected.	
Excessive T1	TEMP1 measuring value is beyond measuring range.	High	Check sensor connection and	
Excessive T2	TEMP2 measuring value is beyond measuring range.	High	patient condition	
TEMP Comm Fail	TEMP module failure or communication failure.	High	Stop measuring function of TEMP module, and notify biomedical engineer or Manufacturer's service staff.	
T1 Calibration Failed	T1 calibration failed.	High	Please check whether	
T2 Calibration Failed	T2 calibration failed	High	the module works properly.	
IBP	IBP			
YY Sensor Off (YY stands for the IBP label name: Art, PA, CVP, RAP, LAP, ICP, P1 and P2)	IBP sensor falls off.	Medium	Check the sensor connection and reconnect the sensor.	
IBP Catheter Off	IBP catheter falls off due to patient movement.	High	Check the catheter connection and reconnect it.	

Message	Cause	Alarm Level	Action Taken
IBP Sensor Err	Malfunction in the IBP sensor or in the extension cable.	Medium	Replace the IBP sensor or the extension cable.
YY Comm Fail (YY stands for the IBP label name: Art, PA, CVP, RAP, LAP, ICP, P1 and P2)	IBP module failure or communication failure	High	Stop measuring function of IBP module, and notify biomedical engineer or Manufacturer's service staff.
C.O.			
C.O. TI Sensor Off	C.O. TI sensor not connected	Low	Insert injective temperature sensor.
C.O. TB Sensor Off	C.O. TB sensor not connected	Low	Insert TB sensor.
C.O. Comm Fail	C.O. module failure or communication failure	High	Stop measuring of C.O. module, or notify biomedical engineer or Manufacturer's service staff.
C.O. TEMP Out Of Range	TI/TB measuring value is beyond measuring range.	High	Please check TI/TB sensor.
CO_2			
CO ₂ Comm Fail	CO ₂ module failure or communication failure	High	Check if the water tray has been fixed.
CO ₂ Check Adapter	The water trap is disconnected or not properly connected.	Low	Properly connect the water trap.
CO ₂ Sensor Over Temp	CO ₂ sensor temperature exceeds +40 °C.	High	Stop using measuring function of CO ₂ module,
CO ₂ Sensor Faulty	Sensor Faulty CO ₂ module failure		notify biomedical engineer.
FiCO ₂ Overrange	The FiCO ₂ concentration exceeds the measurement range.	High	Please check the monitor or patient status and adjust the

Message	Cause	Alarm Level	Action Taken
EtCO ₂ Overrange	The EtCO ₂ concentration exceeds the measurement range.	High	gas concentration accordingly.
CO ₂ Occlude	Water trap of SideStream is occluded.	High	Make sure the gas exhaust works well
Others			
Battery Low	The battery is low, and it at least lasts for 20 minutes.	Medium	Change or charge the
Battery Low	Battery is nearly depleted, and the monitor will shut down soon.	High	battery.
Battery Error	Battery failure or high temperature protection	Low	Replace the battery and restart the monitor. Or suspend charging until the battery cools and then continue charging. If the problem still exists, contact your service personnel.
Battery Current Too The battery current is too high.		Low	Stop using the
Battery Charge Voltage Too High	ttery Charge The battery charging voltage Low batt		battery, contact your service personnel.
Recorder Out Of Paper	Recorder Out Of Paper	Low	Please install the paper
Recorder Probe Overheated	The probe of recorder is overheated.	Low	Stop recording and retry after the probe cools.
Printer Unavailable	The selected printer is not available.	Low	Check whether the network connection is in good condition and whether the printer is malfunctioning.

Message	Cause	Alarm Level	Action Taken
Removable device is full	Less than 10 M space is left in the removable device.	Low	Delete some data in the removable device or use another removable device.
Removable dev read-only	The removable device is read-only.	Low	Repair the removable device or replace it with a new one.
Network Disconnect	In distributed alarm system, the monitor's network is disconnected.	Low	 Check if the network cable is well connected. Check if the CMS is turned on. Check if the IP of bedside monitor and CMS are on the same network segment.
Audio Failed	Audio circuit connection is abnormal, or loudspeaker falls off.	High	Stop using the monitor and notify the manufacturer's service staff.

5.3 Prompts

Message	Cause
ECG ARR Learning	The QRS template building required for Arr. Analysis is in process.
Unable to analyze ST	The ST algorithm cannot produce valid ST value, which may be caused by the large change in the measured value of connected cardiogram ST or ventricular pacing.
Unable to analyze ECG	The arrhythmia algorithm cannot analyze ECG data reliably.
V-Fib/V-Tach Off	V-Fib/V-Tach alarm is set to Off .
ExtremeTachy Off	Extreme Tachycardia alarm is set to Off .
ExtremeBrady Off	Extreme Bradycardia alarm is set to Off .
V-Tach Off	V-Tach alarm is set to Off .
Vent Brady Off	Vent Brady alarm is set to Off .

Message	Cause
Key ARR Alarm Off	One of Key ARR alarms is set to Off .
Electrode Contact Poor	The electrode has bad contact with patient's body.
SpO ₂ Search Pulse	SpO ₂ module is analyzing the patient signal and searching for the pulse to compute the saturation, when sensor is connected with patient.
Manual Measuring	In manual measuring mode
Continual Measuring	In continuous measuring mode
Auto Measuring	In automatic measuring mode
Measurem. Canceled	Press the "Start/stop NIBP measurement" button or shortcut key to stop the measurement.
Calibrating	During calibrating
Calibrat. Canceled	Calibration is over.
Leak. Test Running	The leakage test is in process.
Leak.Test Canceled	Pneumatic test over
Module Self Test	The module is self-testing.
STAT Measuring	Block vessel to puncture in this mode.
Manometer Mode	Calibrate in this mode.
Please Switch To Maintain Mode	Need to calibrate in this mode.
Please Switch To Normal Mode	Need to measure in normal mode.
Leakage Test Ok	There is no leak.
Resetting	NIBP module in resetting
Please Start	NIBP module is in idle status.
Done	NIBP measurement is completed.
Be sure the cuff is disconnected from monitor	In Cleaning Mode, the user clicks the Start Cleaning button.
Cleaning succeeded	Cleaning finished successfully.
Cleaning failed	Abnormal air pressure in cleaning mode.
Cleaning in progress	The monitor is in cleaning progress.
Place Probe On Measure Place	Probe isn't placed on the measurement site.
CO ₂ Standby	Turn from measuring mode to standby mode, making the module in energy-saving status.

Message	Cause		
Please Press 'Zero'.	Enter the IBP zeroing menu, and zeroing is not performed		
Trease Tress Zero.	yet.		
Zero OK	IBP completes zeroing.		
Pulsatile Pressure Zero Fail.	During the zeroing process, pressure fluctuation is excessive.		
Pressure out of normal range,Fail.	During the zeroing process, pressure value is beyond the zeroing range.		
Sensor Off, Fail!	Perform zeroing when the sensor is off.		
Invalid Time,Zero Fail.	Time is not set up prior zeroing.		
Unable to Calibrate in Demo Mode	Perform zeroing in Demo Mode.		
Zeroing	Zeroing is in progress.		
Please Press 'Calibrate'.	Enter the Calibration menu, and Calibration is not performed yet.		
Calibration OK	Calibration is completed.		
Pulse Pressure Calibration Failed	During the Calibration process, pressure fluctuation is excessive.		
Pressure out of range	During the Calibration process, pressure value is beyond the Calibration range.		
Zeroing and Calibration Failed	Zeroing is not performed prior calibration.		
Sensor Off, Fail.	Perform calibration when the sensor is off.		
Invalid Time, Calibration Fail.	Time is not set up prior calibration.		
Unable to Calibrate in Demo Mode	Perform calibration in Demo Mode.		
Calibrating	Calibration is in progress.		
C.O. Lack Param	Parameter is not configured for C.O. measurement.		
Warm-up over	The monitor displays this message after taking the sensor out of the bracket and warm-up is over.		
Measure over	After the Predict measuring is over, the data and message display on the interface.		
Measure time out	No measuring result after the module entering Predict state for 30 s.		
Printer Busy	The monitor is performing a print job.		

Message	Cause
Recorder Setup Needed	If the monitor is not configured with the recorder function, it will indicate Recorder Setup Needed after the Record button is pressed.
No Default Printer	No default printer has been set.
Incomplete parameter input, unable to score	In MEWS interface, parameters are not completely input.
No WIFI module detected	No Wi-Fi module is detected.
NIBP Simul	NIBP Simul function is turned on.
NFC Mode On	NFC Mode is turned on.

5.4 Adjustable Range of Alarm Limits

ECG alarm limits are listed as follows: unit (bpm)

	Patient Type	Adjustable Range
HR	ADU	15~300
	PED/ NEO	15~350

ST analysis alarm limits are listed as follows: unit (mV)

	Adjustable Range
ST	-2.0~2.0

RESP alarm limits are listed as follows: unit (rpm)

Patient Type	Adjustable Range
ADU	6~120
PED/ NEO	6~150

SpO₂ alarm limits are listed as follows (unit %):

	Adjustable Range
SpO_2	20~100

 SpO_2 Desat Limits are listed as follows (unit %):

	Adjustable Range
SpO ₂ Desat Limit	20~99

NOTE:

User can set the range through **User Maintain** > **Alarm Setup** > SpO_2 **Desat Limit**, SpO_2 Desat Limit should be less than or equal to SpO_2 alarm low limit.

PR alarm limits are listed as follows: unit (bpm)

	Adjustable Range
PR (SpO ₂)	30~300
PR (NIBP)	40~240
PR (IBP)	30~300

NIBP alarm limits are listed as follows: unit (mmHg, kPa, cm H_2O , 1 mmHg = 0.133 kPa, 1 cm H_2O =1.36 mmHg)

Patient Type		Adjustable Range (mmHg)
	SYS	25~290
ADU	DIA	10~250
	MAP	15~260
	SYS	25~240
PED	DIA	10~200
	MAP	15~215
	SYS	25~140
NEO	DIA	10~115
	MAP	15~125

TEMP alarm limits are listed as follows:

	Adjustable Range
T1	0 °C (32 °F)~50 °C (122 °F)
T2	0 °C (32 °F)~50 °C (122 °F)
TD	High limit: 0.1 °C (32.18 °F)~50 °C (122 °F)

IBP alarm limits are listed as follows: unit (mmHg)

	Adjustable Range
Art	0~300
RAP, LAP, CVP, ICP	-10~40
PA	-6~120
P1, P2	-50~300

CO₂ alarm limits are listed as follows:

	Adjustable Range
EtCO ₂	0 mmHg~150 mmHg
FiCO ₂	High limit: 0 mmHg~50 mmHg
AwRR	2 rpm~150 rpm

C.O. alarm limits are listed as follows:

	Adjustable Range
TB	23 °C (73.4 °F)~43 °C (109.4 °F)

Chapter 6 Managing Patients

6.1 Admitting a Patient

The monitor displays physiological data and stores it in the trends as soon as a patient is connected. This allows you to monitor a patient who is not yet admitted. It is however important to admit patients properly so that you can identify your patient on recordings, reports, and networked devices.

During admission you enter data that the monitor needs for safe and accurate operation. For example, the patient category setting determines the algorithm the monitor uses to process and calculate some measurements, the safety limits that are applied for some measurements, and the alarm limit ranges.

To admit a patient, please:

- 1. Select the **Admission** key on the screen or.
- 2. Select **Menu** > **Patient Setup** > **New Patient**, then a message is displayed to ask the user to confirm to update patient.
- 3. Click on **No** to cancel this operation; click on **Yes**, the **Patient Info** window is displayed.
- 4. Enter the patient information:
 - MRN: Enter the patient's medical record number.
 - Last Name: Enter the patient's last name (family name).
 - **First Name**: Enter the patient's first name.
 - **Bed No.**: Select a bed No. from 1 to 254.
 - **Doctor**: Enter the attending doctor for the patient.
 - Gender: Male, Female and N/A.
 - Type: Choose the patient type, either Adult, Pediat, or Neonat.
 - BloodType: N/A, A, B, AB and O.
 - Pace: Choose On or Off (You must select On if your patient has a pacemaker).
 - **Date of Birth**: Enter the patient's date of birth.
 - **Date of Admission**: Enter the patient's date of admission.
 - **Height**: Enter the patient's height.
 - Weight: Enter the patient's weight.

NOTE:

Creating new patient and updating patient will clear the history data in the monitor associated with the patient.

6.1.1 Patient Category and Paced Status

The patient category setting determines the algorithm which the monitor uses to process and

calculate some measurements, the safety limits that are applied for some measurements, and the alarm limit ranges.

The paced setting determines whether the monitor shows pacemaker pulses or not. When **Pace** is set to **Off**, pace pulses are filtered and therefore do not show in the ECG wave.

WARNING

- 1 Changing the patient category may change the arrhythmia and NIBP alarm limits. Always check alarm limits to make sure that they are appropriate for your patient.
- 2 For paced patients, you must set Paced to **On**. If it is incorrectly set to **Off**, the monitor could mistake a pace pulse for a QRS and fail to give an alarm during asystole.

6.2 Quick Admit

If you do not have the time or information to fully admit a patient, you can use Quick Admit to quickly admit a patient and complete the rest of the patient information later. To quickly admit a patient, please:

- 1. Select the shortcut key on the screen directly, or
- 2. Select **Menu** > **Patient Setup** > **Quick Admit**, then a message is displayed to ask the user to confirm to update patient.
- 3. Click on **No** to cancel this operation; click on **Yes** to continue and the **Quick Admit** window is displayed.
- 4. Configure **Type** and **Pace** to the correct setting and click **Yes** to finish the quick patient admission operation. If you want to quit the operation, click **No**.

6.3 Barcode Admit

Barcode scanner can recognize patient information directly and quickly, which can provide convenience and reduce mistakes for users. User can scan the barcode through scanner or input the barcode through keyboard, and then the patient information will be stored in monitor.

NOTE:

The start and end code should be set before using scanner to update patient, otherwise the barcode can't be recognized normally.

6.4 Editing Patient Information

To edit the patient information after a patient has been admitted, select **Menu** > **Patient Setup** > **Patient Info**, and make the required changes on the popup interface.

6.5 Central Monitoring System

The monitor can be connected to the central monitoring system. Through the network:

1. The monitor sends patient information, real-time monitoring or measurement data to the central monitoring system.

2. The real-time monitoring information is displayed on the central monitoring system as the same to the monitor, and the central monitoring system can perform some bilateral control. For example: changing patient information, receiving patient, discharging patient and so forth.

For detailed information, please refer to *MFM-CMS Central Monitoring System User Manual*. And the monitor supports HL 7 protocol.

NOTE:

- 1 Use wired instead of wireless networking when connecting the monitor to central monitoring system in the operating room because the ESU will interfere with a wireless network, which may cause networking failure.
- 2 Make sure the network connection between the monitor and MFM-CMS is in good condition when the time synchronization function on the monitor is active. (Default setting is off. Setting path: **Menu > Maintenance > User Maintain > Date/Time Setup > Sync Time**). If the setting is on, the monitor will accept time synchronization from MFM-CMS.
- 3 The time synchronization function might not be available to all software versions of MFM-CMS. Consult our technical service department or your local distributor for more information.
- When the monitor is connected to MFM-CMS (V2.64 above) and Gateway (V1.1 above), user should turn on **Transmission Encryption** function through **User Maintain** > **Other Setups** > **Transmission Encryption** to validate it. When the monitor is connected to MFM-CMS (V2.64 or below) and Gateway (V1.1 or below), the monitor's **Transmission Encryption** function should be turned off. To ensure security, upgrade MFM-CMS and Gateway to the latest version.
- When deploying the network of the monitor and MFM-CMS, it is recommended to isolate the network and the Intranet system of the hospital by using VLAN so as to ensure the network security.

Chapter 7 User Interface

7.1 Setting Interface Style

The user can set the interface based on the requirement, and the set options include the following:

- Sweep of the waveform.
- Parameters needing to be monitored.

Changing some settings may have the risk, so only the authorized person can change them. After changing the settings, please notify the operator.

7.2 Selecting Display Parameters

The user can select the display parameters based on the monitoring and measurement requirements. To select the parameter, please:

- 1. Select the shortcut key on the screen directly, or
- 2. Select Menu > System Setup > Module Switch.
- 3. Select the required parameters from the popup interface.
- 4. Exit the menu and the screen will adjust the parameters automatically.

7.3 Changing Waveform Position

The user can exchange the waveform positions of parameter A and parameter B with the following method:

- 1. Select waveform A and open the setup menu of waveform A.
- 2. Select **Change** from the popup menu and select the desired label name of waveform B from the pull-down list.

7.4 Changing Interface Layout

Select Menu > Display Setup to open the Display Setup menu on which you can

- Select a function screen based on the clinical requirements by configuring **View Selection**.
- Select the maximum number of waveforms displayed on the screen by configuring Wave.
 Num.
- Decide whether the control bar is displayed or not displayed on the screen by setting Control Bar to On or Off.

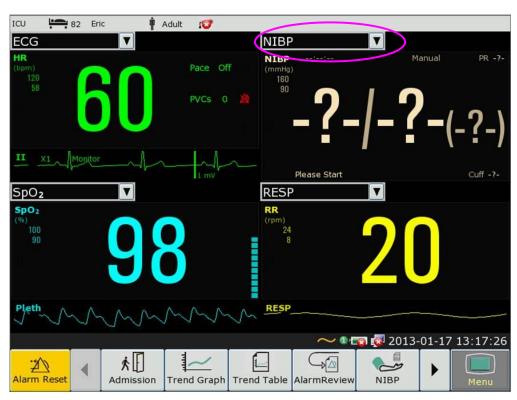
7.5 Viewing Trend Screen

To view the trend screen, the user can press the shortcut key on the screen directly or select Menu > Display Setup > View Selection > TrendScreen.

7.6 Viewing OxyCRG Screen

To view the OxyCRG screen, the user can press the shortcut key on the screen directly or select **Menu** > **Display Setup** > **View Selection** > **OxyCRG**. This interface is always used in NICU because the SpO₂, HR and Resp of the neonate are different from those of adults. OxyCRG is in the bottom half part of wave area; it consists of HR trend, SpO₂ trend and RR trend or compressed respiration waveform.

Select OxyCRG waveform to open OxyCRG Setup menu, you can set:


- 1. **Interval**: set the interval to 1 min, 2 min and 4 min.
- 2. **Parameter**: to select **RESP** or **RR**.

7.7 Viewing Large Font Screen

To open the large font screen, please refer to the following steps:

- 1. Select the shortcut key on the screen directly or.
- 2. Select Menu > Display Setup > View Selection > Large Font to open this interface.

You can view any available parameter by selecting the parameter from the pull-down list on each section.

7.8 Viewing the Vital Screen

To view the vital screen, the user can press the shortcut key on the screen directly or select Menu > Display Setup > View Selection > Vital.

7.9 Viewing the Bed View Window

The **Bed View** window allows you to view one waveform, numeric information of all parameters and alarm information from another bed on the same network. The monitor enables a maximum of eight beds to be viewed.

NOTE:

- The IP addresses of the monitors configured with bed view function should share the same network segment. The IP addresses of the monitors on the same LAN should be unique from each other; you cannot use the bed view function in the monitors in which an IP address conflict exists.
- 2 In order to use the bed view function without impediment, you need to restart the monitor after you change its IP address.
- 3 To use the bed view function smoothly, make sure the network connection is in good condition.
- In the **Bed View** window, you cannot view the over-limit alarms of physiological parameters occurring on other beds. Besides, arrhythmia alarms and vital alarms will be indicated only by alarm icons.

7.9.1 Opening the Bed View Window

Before opening the **Bed View** window, make sure the bed view function is configured on your monitor. To open the **Bed View** window, select **Menu** > **Display Setup** and choose **Bed View** in the **View Selection** list.

7.9.2 Settings of the Bed View Window

Click on the **Bed View** window to open the **ViewBed Setup** menu on which you can

- Assign a bed to be viewed by selecting the bed No. in the **Bed No.** list.
- Select the waveform to be displayed on the window in the **Wave Type** list.
- Use the buttons and to view more numeric information of parameters in the window.

7.10 Changing Parameter and Waveform Colors

The user can set the display colors of parameter and waveform as desire. To change the display color, please select **Menu > Maintenance > User Maintain**, enter the required password **ABC**. Then select **Color Setup** to make color changes on parameter and waveform.

7.11 User Configuration

labeled with • is current configuration.

Select Menu > Maintenance > User Maintain, enter the required password ABC, users can save the current monitor's configuration, delete the saved user configuration and rename it. Three pieces of user configuration can be saved in the monitor. Users can select as desire. The one

7.12 Default Configuration

To set default configuration, select **Menu > Default**. On the **Default** menu, users can choose a factory configuration (adult, pediatric or neonate) based on the patient category. Also, users can choose a user configuration saved in the monitor if it is available. For more information about user configuration, refer to *User Configuration*.

To check the configuration currently used, select Menu > Default. The one labeled with \bullet is current configuration. If there's no labeled configuration, it means the currently used configuration is not one of them.

7.13 Neonatal Configuration*

*Only applicable for X10

Neonatal configuration is exclusively designed for neonate. When it is set to **On**, the patient type is defaulted to be neonate and cannot be changed.

Neonatal configuration is not set by user. Contact the professionals authorized by the manufacturer if needed.

Chapter 8 Monitoring ECG

8.1 Overview

The electrocardiogram (ECG) measures the electrical activity of the heart and displays it on the monitor as a waveform and a numeric. This chapter also tells you about arrhythmia monitoring and ST monitoring.

8.2 ECG Safety Information

WARNING

- Only use the ECG electrodes supplied by the manufacturer when using the monitor for ECG monitoring.
- 2 When connecting the cables and electrodes, make sure no conductive part is in contact with the ground. Verify that all ECG electrodes, including neutral electrodes, are securely attached to the patient but not the conductive part or ground.
- 3 Place the electrode carefully and ensure a good contact. Check every day whether there is skin irritation resulted from the ECG electrodes. If yes, replace electrodes every 24 hours or change their sites.
- 4 Store the electrodes in room temperature. Open the electrode package immediately prior to use. Never mix electrode types or brands. This may lead to problem due to impedance difference. When applying the electrodes, avoid bones close to skin, obvious layers of fat and major muscles. Muscle movement can result in electrical interference. Applying electrodes on major muscles, for example on muscles of thorax, may lead to erroneous arrhythmia alarm due to excessive muscle movement.
- 5 Check if the lead connection is correct before monitoring. If you unplug the ECG cable from the socket, the screen will display the error message "ECG Electrodes OFF" and the auditory alarm is activated.
- 6 If the ECG signal exceeds the measuring range, the monitor will indicates it by a message "ECG Signal Exceeded".
- 7 In order to avoid being burnt, please keep the electrodes far away from the radio knife while using electrosurgical equipment.
- 8 ECG cables can be damaged when connected to a patient during defibrillation or using other high frequency equipment. Check cables for functionality before using them again. It is recommended to use defibrillator-proof ECG lead to avoid burn.
- 9 When using Electrosurgery (ES) equipment, do not place an electrode near the grounding plate of the Electrosurgery device: otherwise there will be a great deal of interference with the ECG signal.
- 10 The electrodes should be made of the same metal materials.
- 11 ECG cables can be damaged when connected to a patient during defibrillation or using other high frequency equipment. Check cables for functionality before using them again. It is recommended to use defibrillator-proof ECG lead to avoid burn.
- 12 Before outputting signals with defibrillator synchronization or ECG, check if the output is functioning normally.

WARNING


- 13 According to AAMI specifications the peak of the synchronized defibrillator discharge should be delivered within 60 ms of the peak of the R wave. The synchronization pulse output on the patient monitors is delayed by a maximum of 35 ms from the R wave peak. Your biomedical engineer should verify that your ECG/Defibrillator combination does not exceed the recommended maximum delay of 60 ms.
- 14 ECG accessories are not suitable for DIRECT CARDIAC APPLICATION. (Refer to IEC60601-1 for more information about the definition of DIRECT CARDIAC APPLICATION.)
- 15 Line isolation monitor transients may resemble actual cardiac waveforms and thus inhibit heart rate alarms. When the electrode or lead is loose or fallen, the monitor is easily affected by the transient response of certain types of insulation monitors. The transient monitor signal produced by poor insulation of the line may be very similar to the actual heart waveform, which will prevent the monitor from prompting a heart rate alarm. In order to avoid this, user should check lead wires for damage and ensure good skin contact prior to and during use. Always use fresh electrodes and follow proper skin preparation techniques.
- 16 The monitor can only be used on one patient at a time. Monitoring more than one patient simultaneously may result in hazards to the patient.
- 17 Pacemaker Failure: During a complete cardiac block or when pacemaker is unable to pacing/capture, high P-wave (greater than 1/5 of the average height of the R-wave) may be incorrectly counted by the monitor, which leads to a missing asystole.
- 18 The monitor is suitable for use in the presence of electrosurgery. When the monitor is used with HF surgical equipment, user (doctor or nurse) should be cautious about patient safety.

NOTE:

- 1 Interference from a non-grounded instrument near the patient and ESU interference can cause inaccuracy of the waveform.
- 2 IEC/EN60601-1-2 (protection against radiation is 3 V/m) specifies that the electrical field density exceeding 3 V/m may cause measurement error in various frequencies. It is accordingly suggested that do not use equipment generating electrical radiation near ECG/RESP monitoring devices.
- 3 The simultaneous use of cardiac pacemaker and other patient-connected equipment may cause safety hazard.
- 4 If the pacemaker signals are beyond the claimed range, the heart rate may be calculated incorrectly.
- 5 In the default settings of the monitor, the ECG waveforms are the first two waveforms from top in the waveform area.
- 6 For measurements in or near the heart we recommend connecting the monitor to the potential equalization system.
- 7 For protecting environment, the used electrodes must be recycled or disposed of properly.

8.3 ECG Display

The figure below is for reference only.

The symbol "①"indicates lead name of display waveform: there are other leads for selection, such as **I**, **II**, **III**, **aVR**, **aVF**, **aVL**, **V** (for 5 Electrodes). If you want to change the lead, please refer to section *Selecting Calculation Lead*.

The symbol "②" indicates Filter setting, there are five options: **Monitor**, **Surgery**, **Diagnosis**, **Enhanced**, **Diagnosis** 1, and **Customized**. If you want to change it, please refer to section *Changing the ECG Filter Setting*.

The symbol "③" indicates waveform gain: there are several options, such as **X0.125**, **X0.25**, **X0.5**, **X1**, **X2**, **X4** and **AUTO**. If you want to change it, please refer to section *Changing the Size of the ECG Wave*.

8.3.1 Changing the Size of the ECG Wave

If any of the displayed ECG waveform is too small or clipped, you can change the size of it on the screen. First select **ECG Waveform Setup** > **ECG Gain**, then select an appropriate factor from the pop-up box to adjust the ECG waveform.

X0.125: make size of ECG signal waveform of 1mV become 1.25 mm;

X0.25: make size of ECG signal waveform of 1mV become 2.5 mm;

X0.5: make size of ECG signal waveform of 1mV become 5 mm;

X1: make size of ECG signal waveform of 1mV become 10 mm;

X2: make size of ECG signal waveform of 1mV become 20 mm;

X4: make size of ECG signal waveform of 1mV become 40 mm;

AUTO: let the monitor choose the optimal adjustment factor for all the ECG waves.

NOTE:

The effect of ECG wave gain is subject to the size of the wave area. Whichever wave gain is chosen, the ECG wave has to be displayed within the wave area, the exceeded part is clipped.

8.3.2 Changing the ECG Filter Settings

The ECG filter setting defines how ECG waves are smoothed. An abbreviation indicating the filter type is shown underneath the lead label on the monitor display. Filter settings do not affect ST measurement.

To change the filter setting, in the **ECG Setup** menu, select **Filter** and then select the appropriate setting.

- **Monitor**: Use this mode under normal measurement conditions.
- **Surgery**: The filter reduces interference to the signal. It should be used if the signal is distorted by high frequency or low frequency interference. High frequency interference usually results in large amplitude spikes making the ECG signal look irregular. Low frequency interference usually leads to a wandering or rough baseline. In the operating room, the Filter reduces artifacts and interference from electro-surgical units. Under normal measurement conditions, selecting **Surgery** may suppress the QRS complexes too much and thus interfere with the clinical evaluation of the ECG displayed on the monitor.
- Diagnosis: Use when undistorted signal is required and its own characteristics can be maintained. The waveform filtered by the bandwidth of 0.05 Hz~150 Hz is displayed so that the actual changes such as R-wave notching or discrete elevation or depression of the ST segments are visible.
- **Enhanced**: It should be used if the signal is distorted by strong interference from high frequency or low frequency. If there is still obviously interference in the signals when select surgery filter mode, it is recommended to choose the enhanced mode. In this mode, QRS wave rhythm information is emphasized, its shape information cannot be considered as diagnostic criteria. Under normal measurement conditions, the selection of this mode may inhibit QRS wave group and interfere ECG analysis.
 - Diagnosis 1: To meet the filtering requirements of ST analysis, it is used when ST analysis is turned on or when ST analysis results are concerned.
- Customized: User can set High-pass Filter and Low-pass Filter as needed. Cutoff frequency of High-pass can be selected as: 0.01 Hz, 0.05 Hz, 0.15 Hz, 0.25 Hz, 0.32 Hz, 0.5 Hz and 0.67 Hz. Cutoff frequency of Low-pass Filter can be selected as: 25 Hz, 35 Hz, 45 Hz, 100 Hz, and 150 Hz. After High-pass filter and Low-pass Filter are set, the bandwidth range of high pass bandwidth to low pass bandwidth can be formed.

8.4 Selecting Calculation Lead

To set the calculation lead, select **ECG Setup** > **Calc. Lead**, or on the **Normal** display interface, click on the calculation lead waveform area, select **Calc. Lead** from the popup interface to make the appropriate setting. For 3 Electrodes, II, I, and III are selectable; For 5 Electrodes, II, I, III, aVR, aVL, aVF and V are selectable; For 6 Electrodes, II, I, III, aVR, aVL, aVF and leads responding to Va and Vb are selectable; For 10 Electrodes, II, I, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, and V6 are selectable. Normal QRS complex should be:

■ The normal QRS should be either completely above or below the baseline and it should not be biphasic. For paced patients, the QRS complexes should be at least twice the height of

pace pulses.

- The QRS should be tall and narrow.
- The P-waves and the T-waves should be less than 0.2 mV.

NOTE:

Make sure you have selected the best lead with the best waveform amplitude and highest signal-to-noise ratio. Choosing the best lead is important for heart beat test, heart beat classification and ventricular fibrillation detection.

8.5 Monitoring Procedure

8.5.1 Preparation

The skin is a poor conductor of electricity; therefore preparation of the patient's skin is important to facilitate good electrode contact to skin.

- Select sites with intact skin, without impairment of any kind.
- Shave hair from sites, if necessary.
- Wash sites thoroughly with soap and water. (Never use ether or pure alcohol, because this increases skin impedance).
- Rub the skin briskly to increase capillary blood flow in the tissues and remove skin scurf and grease.

8.5.2 Connecting ECG Cables

- 1. Attach clip or snap to electrodes prior to placement.
- 2. Put the electrodes on the patient. Before attaching, apply some conductive jelly on the electrodes if the electrodes are not electrolyte self-supplied.
- 3. Connect the electrode lead to the patient's cable.

CAUTION

To protect the monitor from damage during defibrillation, for accurate ECG information and to protect against noise and other interference, use only ECG electrodes and cables specified by EDAN.

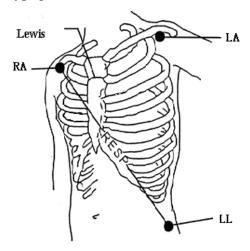
8.5.3 Selecting Electrode Type

To change the electrode type, please:

- 1. Select the ECG parameter area, open the ECG Setup menu;
- 2. Set Electrode Type to 3 Electrodes, 5 Electrodes, 6 Electrodes, 10 Electrodes or AUTO based on the electrodes used.

8.5.4 Installing Electrodes

NOTE:

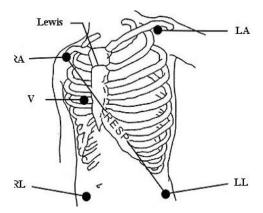

The following table gives the corresponding electrodes names used in Europe and America respectively. (Electrodes names are represented by R, L, F, N, C, C1-C6 in Europe, whose corresponding electrodes names in America are RA, LA, LL, RL, V, V1-V6.)

AHA (American Standard)		IEC (Europe Standard)	
Electrode Labels	Color	Electrode Labels	Color
RA	White	R	Red
LA	Black	L	Yellow
LL	Red	F	Green
RL	Green	N	Black
V	Brown	С	White
V1	Brown/ Red	C1	White/ Red
V2	Brown/ Yellow	C2	White/ Yellow
V3	Brown/ Green	C3	White/ Green
V4	Brown/ Blue	C4	White/ Brown
V5	Brown/ Orange	C5	White/ Black
V6	Brown/ Purple	C6	White/ Purple

8.5.4.1 Placement for 3-Electrode

Take the American standard for example, see the following figure:

- RA placement: directly below the clavicle and near the right shoulder.
- LA placement: directly below the clavicle and near the left shoulder.
- LL placement: on the left hypogastrium.

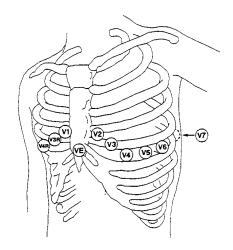


Placement for 3-Electrode

8.5.4.2 Placement for 5-Electrode

Take the American standard for example, see the following figure:

- RA placement: directly below the clavicle and near the right shoulder.
- LA placement: directly below the clavicle and near the left shoulder.
- RL placement: on the right hypogastrium.
- LL placement: on the left hypogastrium.
- V placement: on the chest, the position depends on your required lead selection.

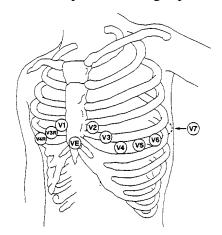

Placement for 5-Electrode

NOTE:

To ensure the patient safety, all electrodes must be attached to the patient.

For 5-electrode, attach the V electrode to one of the indicated positions as below:

- V1 On the 4th intercostal space at the right sterna margin.
- V2 On the 4th intercostal space at the left sterna margin.
- V3 Midway between V2 and V4 electrodes.
- V4 On the 5th intercostal space at the left clavicular line.
- V5 On the left anterior axillary line, horizontal with V4 electrode.
- V6 On the left middle axillary line, horizontal with V4 electrode.
- V3R-V6R On the right side of the chest in positions corresponding to those on the left.
- VE Over the xiphoid position.
- V7 On the 5th intercostal space at the left posterior axillary line of back.
- V7R On the 5th intercostal space at the right posterior axillary line of back.

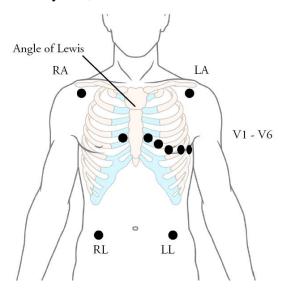


V-Electrode Placement for 5-Electrode

8.5.4.3 Placement for 6-Electrode

For the placement of 6 electrodes, please use the position of 5 electrodes in the schematic diagram to remove the two thoracic leads. The two thoracic leads Va and Vb can be placed at any two positions from V1 to V6, as shown in the following thoracic leads. To ensure that the label is correct, the selected Va and Vb placements must be set simultaneously in **ECG Setup**.

- V1 On the 4th intercostal space at the right sterna margin.
- V2 On the 4th intercostal space at the left sterna margin.
- V3 Midway between V2 and V4 electrodes.
- V4 On the 5th intercostal space at the left clavicular line.
- V5 On the left anterior axillary line, horizontal with V4 electrode.
- V6 On the left middle axillary line, horizontal with V4 electrode.
- V3R-V6R On the right side of the chest in positions corresponding to those on the left.
- VE Over the xiphoid position.
- V7 On the 5th intercostal space at the left posterior axillary line of back.
- V7R On the 5th intercostal space at the right posterior axillary line of back.


V-Electrode Placement for 6-Electrode

8.5.4.4 Placement for 10-Electrode

Take the American standard for example; the 10 electrodes should be placed as follows:

The limb electrodes are placed in the same position as the 3 electrodes placement.

- RL placement: on the right hypogastrium.
- V1: On the 4th intercostal space at the right sterna margin.
- V2: On the 4th intercostal space at the left sterna margin.
- V3: Midway between V2 and V4 electrodes.
- V4: On the 5th intercostal space at the left clavicular line.
- V5: On the left anterior axillary line, horizontal with V4 electrode.
- V6: On the left middle axillary line, horizontal with V4 electrode.

Placement for 10-Electrode

8.5.4.5 Recommended ECG Electrode Placement for Surgical Patients

WARNING

When using Electrosurgery (ES) equipment, leads should be placed in a position in equal distance from Electrosurgery electrotome and the ES grounding plate to avoid cautery. Electrosurgery equipment wire and ECG cable must not be tangled up.

Monitoring ECG leads are mainly used for monitoring the patient's vital signs. When using the patient monitor with other electrosurgery equipment, it is advised to use the counteracting defibrillation ECG lead.

The placement of the ECG leads will depend on the type of surgery that is being performed. For example, in an open chest surgery the electrodes may be placed laterally on the chest or on the back. In the operating room, artifacts may affect the ECG waveform due to the use of ES (Electrosurgery) equipment. To help reduce this you can place the electrodes on the right and left

shoulders, the right and left sides near the abdomen, and the chest lead on the left side at mid-chest. Avoid placing the electrodes on the upper arms. Otherwise the ECG waveform will be too small.

WARNING

ECG cables can be damaged when connected to a patient during defibrillation or using other high frequency equipment. Check cables for functionality before using them again. It is recommended to use defibrillator-proof ECG lead to avoid burn.

NOTE:

- 1 If an ECG waveform is not accurate, while the electrodes are tightly attached, try to change the leads displayed on the screen.
- 2 Interference from a non-grounded instrument near the patient and ESU interference can cause inaccuracy of the waveform.

8.6 ECG Menu Setup

8.6.1 Setting Alarm Source

To change the alarm source, please select **ECG Setup** > **Alarm Source**, then a pop-up box is displayed:

HR: the monitor considers the HR as HR/PR alarm source;

PR: the monitor considers the PR as HR/PR alarm source;

AUTO: If the Alarm Source is set to **AUTO**, the monitor will use the heart rate from the ECG measurement as the alarm source whenever the ECG measurement is switched on and at least one ECG lead can be measured without a technical condition. The monitor will automatically switch to PR as the alarm source if:

- -a valid ECG lead can no longer be measured and
- -a PR source is switched on and available.

The monitor then uses the pulse rate from the measurement currently active as system pulse. While PR is the alarm source, all arrhythmia and ECG HR alarms are switched off. If an ECG lead becomes available again, the monitor automatically uses HR as alarm source.

8.6.2 Setting Beat Source

To change the beat source, select either ECG Setup > Beat Source or PR Setup > Beat Source. Select from the following options:

HR: HR is HR/PR beat source;

PR: PR is HR/PR beat source:

AUTO: If the Beat Source is set to **AUTO**, the monitor will use HR as the beat source whenever the ECG measurement is switched on, and at least one ECG lead can be measured. The monitor

will automatically switch to PR as the beat source if:

- a valid ECG lead can no longer be measured and
- a PR source is switched on and available.

If an ECG lead becomes available again, the monitor automatically uses HR as beat source and the monitor gives a "Di" tone with a blinking heart displaying in the HR parameter box when one heartbeat is detected. While a pulse is detected, the monitor gives a "Da" tone.

8.6.3 Smart Lead Off

When **Electrode Type** is **5 Electrodes**, **6 Electrodes** or **10 Electrodes** and **Smart LeadOff** is set to **On**, if the selected ECG waveform cannot be measured because of lead-off or other reasons, it will automatically switch to another available lead channel via which a waveform can be measured. And the lead name above the display ECG waveform also automatically turns into the current one.

To change the smart lead off setting, select **ECG Setup** > **Smart LeadOff**, and select the desired setting.

8.6.4 ECG Screen Layout

It varies with **Electrode Type**. When **Electrode Type** is set to **3 Electrodes**, **Screen Layout** can be set to **Normal**, and it can display one ECG waveform on the main screen.

When **Electrode Type** is set to **5 Electrodes** or **6 Electrodes**, **Screen Layout** can be set to **Normal**, **Full-Scr** and **Half-Scr**. Select **Normal** to display two ECG waveforms on the main screen; select **Full-Scr** to display seven ECG waveforms which occupy the area of seven waveforms on the main screen; Select **Half-Scr** to display seven ECG waveforms on the screen, occupying the area of four waveforms.

When **Electrode Type** is set to **10 Electrodes**, **Screen Layout** can be set to **Normal** and **12 Leads**. Select **Normal** to display two ECG waveforms on the main screen; select **12 Leads** to display 13 ECG waveforms.

When **Electrode Type** is set to **AUTO**, the monitor can automatically identify the electrode type according to the actual connection condition of the electrodes, and provide as much lead data as possible when the condition of the lead signal is satisfied.

NOTE:

- 1 If 3 Electrodes is selected in the ECG Setup menu, only Normal can be selected for Screen Layout in the sub-menu.
- 2 In 10 Electrodes display interface, the filter can only be set to Diagnosis.
- If **6 Electrodes** is selected in the **ECG Setup** menu, Va and Vb can be respectively set to either Lead V1 ~ V6, but cannot be set to the same lead, Va is Lead V2 by default, Vb is Lead V5 by default.
- 4 If **AUTO** is selected in the **ECG Setup** menu, when the electrodes connected to patient is reduced from 10 electrodes to 3/5/6 electrodes, user can click **Update**

Electrode button to enable the monitor to perform lead off alarm according to actual electrodes.

5 If AUTO is selected in the ECG Setup menu, Va and Vb cannot be set when the monitor recognizes the 10 electrodes system automatically. Va is fixed as V1 and Vb is fixed as V2.

8.6.5 Setting Pace Status

It is important to set the paced status correctly when you start monitoring ECG. To change the paced status in the ECG Setup menu, select **Pace** to toggle between **On** or **Off**. When **Pace** is set to **On**:

- Pace Pulse Rejection is switched on. This means that pacemaker pulses are not counted as extra QRS complexes.
- Paced symbol is displayed as | on the main screen. At this time, the artifact is displayed on the screen instead of the actual pacemaker crest. All pacemaker crests are the same, so do not give a diagnostic explanation about the size and shape of the pacemaker crest.

NOTE:

When monitoring a patient with a pacemaker, set **Pace** to **On**. If monitoring a patient without a pacemaker, set **Pace** to **Off**.

WARNING

- 1 For patients with pacemakers, the pace must be switched ON. Otherwise, the pacing impulse may be counted as regular QRS complexes, which could prevent an asystole event from being detected. When changing settings and admitting patients, please make sure the pace mode is always correct.
- 2 External pacing electrodes: When using pacemakers with external pacing electrodes on the patient, the quality of arrhythmia is severely degraded due to the high energy level in the pacemaker pulse. This can cause arrhythmia algorithms can not detect the pacemaker without capturing or asystole.

Some pace pulses can be difficult to reject. When this happens, the pulses are counted as a QRS complex, and could result in an incorrect HR and failure to detect cardiac arrest or some arrhythmias. Be sure to check the paced symbol on the display screen has correctly detected the pacing pulse. Keep pacemaker patients under close observation.

8.6.6 ECG Calibration

This item is used to calibrate ECG waveform. When you select this item from ECG Setup menu again, the ECG waveform calibration ends.

NOTE:

The patients can't be monitored during ECG calibration.

8.6.7 ECG Waveform Settings

To change this speed, select **ECG Waveform Setup** > **Sweep**, then select an appropriate setting from the pop-up list. The bigger the value is, the wider the waveform is.

Select **ECG Waveform Setup** > **Cascade**: Turn on or off ECG cascade. Cascade means the ECG waveforms displayed on the screen all occupy the area of two waveforms. This function is valid only when **Screen Layout** is set to **Normal**.

8.7 12-Lead ECG Monitoring

In 12-lead display mode, 12 ECG waveforms and one rhythm lead waveform will be shown at the waveform area on the screen. The rhythm lead is for ECG calculation before entering 12-lead display mode. Also, in this mode, the filter mode is set to **Diagnosis** and cannot be changed.

NOTE:

- 1 The 12-lead analysis results are for reference only and the clinical significance must be determined by the physician.
- 2 If the ECG signal is too weak, the 12-lead analysis results might be affected.
- 3 Regarding to the standard's instruction for ECG measurement and analysis of the monitor, please refer to Smart ECG Measurement and Interpretation Programs User Manual_EDAN2.
- 4 For 12-lead analysis, the gain selection contains: 1.25 mm/mV (x0.125), 2.5 mm/mV (x0.25), 5 mm/mV (x0.5), 10 mm/mV (x1), AUTO gain.

8.7.1 Activating 6/10 Electrodes Monitoring

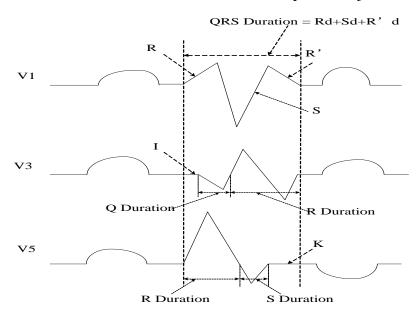
Select Menu > Maintenance > User Maintain > Other Setups > Activate 6/10 Electrodes in order to get the SN number which is supposed to be supplied to EDAN for a corresponding password. Enter the password on the above-mentioned interface and restart the monitor, and the 6/10 Electrodes monitoring function will be activated.

NOTE:

If the 6/10 Electrodes monitoring fails to be activated, users can reenter the password and try to activate this function again.

8.7.2 Analysis Function

If your monitor is configured with the 12-lead ECG monitoring function, the monitor can perform automatic analysis function. To perform 12-lead analysis:


- In the ECG Setup menu, set Electrode Type to 10 Electrodes and set Screen Layout to 12 Leads.
- 2. Select the shortcut key on the screen directly.
- 3. The analysis results will be provided in the **Diagnosis Review** window after approximately 10 seconds.

The measurement function provides the automatic measurement of the common parameters, such as heart rate, PR interval, QRS duration, QT/QTC interval, P/QRS/T axis, RV5/SV1 amplitude and RV5+SV1 amplitude. The interpretation function provides the automatic analysis of hundreds of abnormal cases, such as arrhythmia, AV block, IVCD (Intraventricular Conduction Block), myocardial infarction, ventricular hypertrophy and atrial enlargement, ST-T abnormality and electrical axis deviation.

8.7.3 Waveform Durations and Isoelectric Segments

Between the global onset and offset of the QRS-complex, signal parts with duration of more than 6 ms and amplitude not exceeding 20 μ V should be defined as isoelectric segments.

Because the duration of the Q-, R- or S-wave of 12 leads is respectively detected by the ECG algorithm, isoelectric parts (I-waves) after global QRS-onset or before global QRS-offset (K-wave) are excluded in the measurement duration of the respective adjacent waveform.

8.8 ST Segment Monitoring

The monitor performs ST segment analysis on normal and atrial paced beats and calculates ST segment elevations and depressions. This information can be displayed in the form of ST numerics and ST templates on the monitor.

ST segment monitoring function is shut off by default. You can switch it to **On** when necessary. When using the ST analysis function, the ST analysis results will be displayed on the right of the main screen.

NOTE:

- 1 ST-segment analysis is intended for use with adult and pediatric patients and is not clinically validated for use with neonatal patients.
- 2 In ST analysis, the obtained ST value and ST template are all unaffected by the selected filter mode. ST algorithm itself uses a dedicated linear filter to ensure the signal is not distorted, and to better ensure the consistent and accurate

measurement value and ST template can be obtained in different filter modes. If the doctor wants to observe the waveform to evaluate ST segment result, it is recommended to use the ST template for observation, as it is not affected by the filter mode. If the real-time waveform displayed on the interface is used to evaluate ST segment result, it is recommended to select Diagnosis mode.

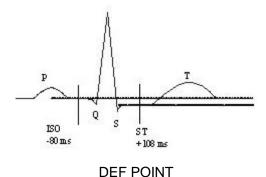
- 3 Reliable ST monitoring may be influenced in following situations:
 - You are unable to get a lead with low noise.
 - If there is arrhythmia such as atrial fibrillation/flutter, the ECG baseline may be irregular.
 - The patient is continually performing ventricular paced.
 - The dominant template cannot be obtained for a long time.
 - The patient has left bundle branch block.

When any of above situations happens, ST monitoring should be switched off.

- 4 The ST algorithm has been tested for accuracy of the ST segment data. The significance of the ST segment changes need to be determined by a clinician.
- If you use ST analysis, you must adjust the ST measurement point when you start the monitor. If the patient's heart rate or ECG waveform changes significantly, this will affect the size of the QT interval, so the ST point must be placed. If the equipotential or ST points are not set correctly, the ST fragments of the artifacts may be depressed or raised. Always ensure that the ST measurement point is suitable for your patient.
- 6 ST values may be affected by such factors as some drugs or metabolic and conduction disturbances.
- 7 ST is calculated with a fixed delay from the R position. Changes in heart rate or the width of QRS may affect ST.
- 8 If the algorithm triggers self-learning (either manually or automatically), the calculation of ST segment will be reinitialized.

8.8.1 Setting ST Analysis

To change ST analysis, please select **ECG Setup** > **ST Analysis**, then select **On** or **Off** from the pop-up list.


8.8.2 ST Display

Your monitor screen may be configured to look slightly different from the illustrations.

8.8.3 About ST Measurement Points

The ST value for each beat complex is the vertical difference between the ISO point and the ST point, as shown in the diagram below. The isoelectric (ISO) point provides the baseline, and the ST point is at the midpoint of the ST segment. The J point is where the QRS complex changes its slope; as it is a fixed distance away from the ST point, it can be useful to help you position the ST point correctly.

The ST and ISO measurement points need to be adjusted when you start monitoring, and if the patient's heart rate or ECG morphology changes significantly. Always ensure that ST measurement points are appropriate for your patient. Abnormal QRS complex is not considered in ST segment analysis.

NOTE:

In DEMO mode, the **Analysis Point Setup** button is unavailable.

8.8.4 Adjusting ST and ISO Measurement Points

Depending on your monitor's configuration, the ST point can be positioned, too.

These two points can be adjusted by turning the knob. When adjusting ST measurement point, the system will show the ST Measurement Point Window. The system displays the QRS complex template in the window. It is adjustable for the highlight bar in the window. You may select ISO or ST, switch the knob left or right to move the cursor line. When the cursor is at the required position, you may select the base point or the measurement point.

8.9 Arrhythmia Monitoring

8.9.1 Arrhythmia Analysis

The arrhythmia algorithm is used to monitor ECG of patients in clinics, and detect the changes of heart rate and ventricular rhythm, and also save arrhythmia events and generate alarm information. Arrhythmia algorithm can monitor paced and non-paced patients. Qualified personnel can use arrhythmia analysis to evaluate patient's condition (such as heart rate, PVCs frequency, rhythm and ectopic beat) and decide the treatment. Besides detecting change of ECG, arrhythmia algorithm can also monitor patients and give proper alarm for arrhythmia.

The measured PVCs and Pauses/min will be displayed in main interface.

ARR Alarms	Occurring Condition		
Asystole	No QRS is detected for 4 consecutive seconds.		
V-Fib/V-Tach	4 consecutive seconds' fibrillation wave occurs; Or 5 consecutive ventricular beats, and ventricular HR ≥100 bpm.		
Run PVCs	$3 \le$ the number of consecutive PVCs < 5		
Couplet	2 consecutive PVCs		
PVC Bigeminy	A dominant rhythm of N, V, N, V ($N = \text{supraventricular beat}$, $V = \text{ventricular beat}$) was detected.		
PVC Trigeminy	A dominant rhythm of N, N, V, N, N, V		
R on T	A type of single PVC under the condition that HR < 100, R-R interval is less than 1/3 the average interval, followed by a compensating pause of 1.25X the average R-R interval (the next R wave advances onto the previous T wave).		
PVC	Single PVC detected in normal heartbeats, and the number of consecutive single PVC \geq 4 within 30 s.		
Tachy	Adult: RR interval for 5 consecutive QRS complex \leq 0.5 s. Pediatric/neonatal: RR interval for 5 consecutive QRS complex \leq 0.375 s.		
Brady	Adult: RR interval for 5 consecutive QRS complex \geq 1.5 s. Pediatric/neonatal: RR interval for 5 consecutive QRS complex \geq 1 s.		
Missed Beat	If HR < 120 bpm, no beats are detected for 1.75 times average RR interval; or if HR \geq 120 bpm, no beats are detected for one second;		
Irr Rhythm	Consistently irregular heart rhythm		
Pacer not Capture	No QRS complex detected in 300 ms after a pace pulse.		
Pacer not Pacing	No pace pulse detected in 1.75 times RR interval after a QRS complex.		
Vent Brady	5 consecutive ventricular beats, and ventricular HR < 20 bpm.		
Vent Rhythm	5 consecutive ventricular beats, and 20 bpm \leq ventricular HR $<$ 40 bpm.		
PVCs High	The measurement value of PVCs is greater than high alarm limit that has been set.		
Sustain VT	The duration of ventricular tachycardia rhythm \geq the threshold value that has been set.		
ExtremeTachy	$HR \ge Extreme$ Tachycardia threshold value that has been set.		
ExtremeBrady	$HR \le Extreme$ Bradycardia threshold value that has been set.		
V-Tach	5 consecutive ventricular beats and ventricular HR \geq 100 bpm.		
Wide QRS Tachy	Meet tachycardia conditions, and QRS wave width ≥ 160 ms.		
Non-Sustain	$3 \le$ The number of consecutive ventricular beats < 5 , and ventricular HR		
VT	\geq 100 bpm.		
Afib Atrial fibrillation alarm should meet below two conditions for 1 The RR interval of normal beats must be irregular, and it can be the obvious f or P waves do not exist.			

ARR Alarms	Occurring Condition	
Acc. Vent Rhythm	5 consecutive ventricular beats, and 40 bpm ≤ ventricular HR < 100 bpm.	
Pause	No QRS is detected within the heartbeat pause threshold value that has been set.	
Pauses/min High	The measurement value of Pause/min is greater than high alarm limit that has been set.	
VEB	The delayed ventricular beats detected in normal heartbeats occur more than or equal to 3 times within 30 s.	
Multiform PVCs	Different forms of ventricular premature beats are detected in 15 beats.	
IPVC	The single ventricular premature beat between 2 sinus beats with normal interval occurs more than or equal to 3 times within 30 s.	
PAC Bigeminy	The dominant rhythm of N, A, N, A, N, A, and the rhythm number exceeds the number of threshold value that has been set (N = supraventricular beat, A = atrial beat).	
PAC Trigeminy	The dominant rhythm of N, N, A, N, N, A, N, N, A, and the rhythm number exceeds the number of threshold value that has been set.	
Low Voltage(Limb)	The signal amplitudes of I, II and III leads shall not exceed alarm threshold value that has been set. PS: this alarm is available for 5, 6 or 10 electrodes only, not available for 3 electrodes.	

Selecting an ECG lead for Arrhythmia:

In arrhythmia monitoring, it is important to select the appropriate lead.

For non-paced patients, the guidelines are:

- QRS should be tall and narrow (recommended amplitude > 0.5 mV)
- R wave should be above or below the baseline (but not biphasic)
- T wave should be smaller than 1/3 of the R wave height
- P wave should be smaller than 1/5 of the R wave height.

For paced patients, in addition to above guidelines, the pacemaker signal should also:

- Not wider than normal QRS
- The QRS complexes should be at least twice the height of the pacing pulse
- Large enough to be detected, without repolarization signal

According to Standard ISO60601-2-27, the minimum detection level of the QRS complex is set to 0.15 mV, to prevent the detection of P-wave or baseline noise as QRS complexes. Adjusting ECG displayed waveform size (gain adjustment) won't influence ECG signals which are used for arrhythmia analysis. If the ECG signal is too small, a false asystole alarm may occur.

Aberrantly-Conducted Beats:

As not recognizing the P waves, the monitoring system is difficult to distinguish between aberrantly-conducted beats and ventricular heartbeat. If the aberrantly-conducted beat is similar to ventricular tachycardia, it may be classified as ventricular. Make sure to select such a lead, the aberrantly-conducted beats have an R wave that is as narrow as possible to minimize the incorrect

calls. The ventricular should have a different appearance from "normal heartbeat". Physicians should be more alert to these patients.

Intermittent bundle branch block: bundle branch block or other bundle obstruction phenomenon is a challenge for arrhythmia algorithm. If the QRS wave during the block has a considerable change in morphology compared to the normal QRS of learning, the blocked heartbeat may be misclassified as ventricular tachycardia, resulting in an incorrect chamber alarm. Make sure to select such a lead, which blocks the heartbeat of the R wave as narrow as possible to minimize the wrong classification. Ventricular heartbeat should have a different appearance from "normal heartbeat". Physicians should be more alert to these patients.

NOTE:

- 1 Arrhythmia analysis is intended to be used with CMS 2.65 or above version. Please update CMS if its version is lower than 2.65.
- 2 Heart rate reading may be affected by cardiac arrhythmias. Do not rely entirely on heart rate alarms when monitoring patients with arrhythmia. Always keep these patients under close surveillance.
- 3 Since the arrhythmia detection algorithm sensitivity and specificity is less than 100%, sometimes there may be some false arrhythmias detected and also some true arrhythmia events may not be detected. This is especially true when the signal is noisy.
- The ventricular HR mentioned above refers to: when the consecutive PVCs number ≥ 3, the algorithm calculates ventricular HR with the average of 2-8 RR intervals. The methods are different from the HR Averaging Method of the monitor. Therefore, the ventricular HR values calculated by algorithm may be different from the HR values calculated by HR Averaging Method. The ventricular HR is for judging arrhythmias and is not exactly equal to the HR displayed on the interface.
- 5 The ARR analysis results and HR values obtained during ARR analysis and HR calculation are not affected by the selected filter mode. The algorithm itself has independent data-flow processing, which can better ensure the consistent and accurate results in different filter modes.
- 6 Atrial fibrillation alarm should meet below two conditions for 1 minute:
 - The RR interval of normal beats must be irregular,
 - It can be seen that the obvious f or P waves do not exist.
- 7 Atrial fibrillation analysis is only applicable to adult patients and should not be performed for PVC or pacing fluctuations.
- 8 Atrial flutter cannot be detected by the atrial fibrillation algorithm because most of their RR intervals are regular.
- 9 In following situations, atrial fibrillation alarm detection error may occur:
 - Sinus arrhythmia
 - Atrioventricular block
 - Frequent ventricular premature beats
 - Myoelectric interference
 - Electrode motion artifact

8.9.2 ARR Analysis Menu

8.9.2.1 Switching ARR Analysis On and Off

To switch ARR Analysis on or off, in the **ECG Setup** menu, select **ARR Analysis** to toggle between **On** and **Off** from the popup interface.

8.9.2.2 ARR Alarm Setup

Select **ECG Setup** > **ARR Analysis** > **ARR Alarm Setup** to change the following ARR alarm settings:

- Separately switch on or off each arrhythmia alarm and set the alarm level.
- Select All Alarms On/All Alarms Off to switch on or off all arrhythmia alarms.
- Set the threshold of certain arrhythmia alarms. When an arrhythmia exceeds its threshold, an alarm will be triggered.
- Select **Default** to restore the ARR alarm settings to factory defaults.

Confirm the changes to make the settings effective.

V-Fib/V-Tach, ExtremeTachy, ExtremeBrady, V-Tach and Vent Brady are key ARR alarms and they are preset to be on. The user can switch on/off those key ARR alarms only when you have enabled **Key ARR Alarm Switch Authority**. To enable the authority,

- 1. Select **Menu** > **Maintenance** > **User Maintain**, and enter the required password **ABC**.
- 2. Select **Alarm Setup** and set **Key ARR Alarm Switch Authority** to **On**. If any of key ARR alarms is switched off, the bottom information area will prompt **Key ARR Alarm Off**. Clicking the prompts can view the details.

Asystole and **Sustain VT** alarms are preset to **On** and cannot be turned off.

WARNING

When the ARR alarm is set to **Off**, the monitor won't give an alarm prompt even if an alarm occurs. In order to avoid endangering the patient's life, the user should use this function cautiously.

NOTE:

Pacer not Capture and Pacer not Pacing alarms are available only when Pace is set to On.

8.9.2.3 Adjustable Range of ARR Alarm Threshold

ARR Alarm	Range
PVCs High	1/min to 99/min
Pause	2 s, 2.5 s, 3 s
ExtremeTachy	Adult: 120 bpm to 300 bpm; Pediatric/neonatal: 120 bpm to 350 bpm
PAC Bigeminy	3/min to 50/min

ARR Alarm	Range
PAC Trigeminy	
Pauses/min High	1/min to 20/min
Sustain VT	15 s to 45 s
ExtremeBrady	15 bpm to 60 bpm
Low Voltage(Limb)	0.3 mV to 0.8 mV

8.9.2.4 ARR Selflearning

Pick this item **ARR Selflearn** to start a learning procedure, and **ECG ARR Learning** displayed on the screen.

The ARR selflearning will start automatically in the following status:

- Changing patient type or electrodes type;
- Connecting or switching calculation leads;
- Changing pacemaker status;
- Exiting DEMO or Standby mode;
- Admitting a patient;
- Switching calibration mode into normal measurement mode;

NOTE:

- 1 During the relearning phase of the algorithm, arrhythmia detection may not be available. So you should closely monitor the patient condition during and for several minutes after the learning phase to allow the algorithm to reach optimal detection performance.
- Take care to initiate ARR selflearning only during periods of predominantly normal rhythm and when ECG signal is relatively noise-free. If ARR selflearning takes place during arrhythmia, the ectopics may be incorrectly learned as normal QRS complex. This may result in missed detection of subsequent events of arrhythmia.
- 3 If ARR selflearning is performed during ventricular rhythm, ventricular heartbeats may be erroneously identified as normal QRS complexes. This may lead to missed ventricular tachycardia and ventricular fibrillation events.

Due to this reason, you should:

- 1) Take care that ARR selflearning may start automatically;
- 2) Response to electrodes off information;
- 3) Always check the correctness of arrhythmia alarm.

Chapter 9 Monitoring RESP

9.1 Overview

The monitor measures respiration from the amount of thoracic impedance between two ECG electrodes. The change of impedance between the two electrodes, (due to the thoracic movement), produces a respiratory waveform on the screen.

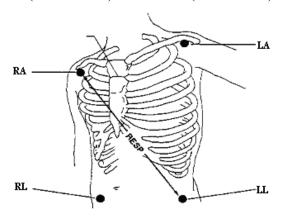
9.2 RESP Safety Information

WARNING

- If you do not set the **Hold High** and **Hold Low** for the respiration correctly in manual detection mode, it may not be possible for the monitor to detect apnea. If you set the **Hold High** and **Hold Low** too low, the monitor is more likely to detect cardiac activity, and to falsely interpret cardiac activity as respiratory activity in the case of apnea.
- 2 Respiration measurements can not detect all underexposure sudden events, nor can they distinguish between central, obstructive and mixed respiratory asphyxial events. It only prompts alarm in a predetermined time if the last breath is detected and the next breath is not detected, so it can not be used for diagnostic purposes.
- 3 If operating under conditions according to the EMC Standard EN 60601-1-2 (Radiated Immunity 3 V/m), field strengths above 3 V/m may cause erroneous measurements at various frequencies. Therefore it is recommended to avoid the use of electrically radiating equipment in close proximity to the respiration measurement unit.
- 4 Cardiogenic artifact in impedance respiration monitoring may make it difficult to detect breaths or may otherwise be counted as breaths. In some instances, the breath rate may also correspond to the heart rate making it difficult to determine if the signal is due to breathing or the cardiac cycle. Do not rely on RESP monitoring as the sole method for detecting cessation of breathing. Follow hospital guidelines and best clinical practices for apnea detection including monitoring additional parameters that indicate the patient's oxygenation status, such as EtCO₂ and SpO₂.
- 5 For the diagnosis of apnea, especially in premature infants and infants, the safety and effectiveness of respiration measurements have not been validated.
- 6 To monitor the respiration, only non-ESU-proof accessories can be used. This is because the internal impedance of the ESU-proof accessories required to be used for electrosurgical operation is too large.
- 7 Some implantable pacemakers can adjust their triggering frequency according to the "minute ventilation rate." Impedance respiration measurements may cause these pacemakers to react incorrectly. To prevent this, turn off the respiration measurement.
- 8 In manual detection mode, after changing the gain of the respiration wave, be sure to check the setting of hold high and hold low.
- 9 Respiration measurement cannot be performed when ESU is used.

WARNING

10 When ECG electrode is placed on patient's limb, the impedance respiration may be unreliable.


NOTE:

The RESP monitoring is not recommended to be used on patients who are very active, as this can cause false alarms.

9.3 Electrode Placement for Monitoring RESP

Correct patient skin preparation techniques for electrode placement are important for RESP measurement: you will find this information in the chapter on ECG.

The RESP signal is always measured between two of the ECG electrodes. There are two standard ECG leads for selection: I lead (RA and LA) and II lead (RA and LL).

Electrodes Placement for 5 Electrodes

9.4 Cardiac Overlay

Cardiac activity that affects the RESP waveform is called cardiac overlay. It happens when the RESP electrodes pick up impedance changes caused by the rhythmic blood flow. Correct electrode placement can help to reduce cardiac overlay: avoid the liver area and the ventricles of the heart in the line between the respiratory electrodes. This is particularly important for neonates.

9.5 Chest Expansion

Some patients, especially neonates, expand their chests laterally. In these cases it is best to place the two respiratory electrodes in the right mid-axillary and left lateral chest areas at the patient's maximum point of breathing movement to optimize the respiratory wave.

9.6 Abdominal Breathing

Some patients with restricted chest movement breathe mainly abdominally. In these cases, you may need to place the left leg electrode on the left abdomen at the point of maximum abdominal expansion to optimize the respiratory wave.

NOTE:

Place the red and green electrodes diagonally to optimize the respiration waveform. Avoid the liver area and the ventricles of the heart in the line between the RESP electrodes so as to avoid cardiac overlay or artifacts from pulsating blood flow. This is particularly important for neonates.

9.7 Selecting RESP Lead

To change RESP lead, in the **RESP Setup** menu, select **RESP Lead** to pick up the appropriate lead from the pop-up list.

9.8 Changing Hold Type

To change the calculation mode, in the **RESP Setup** menu, set **Hold Type** to **Manual** or **AUTO**. When it is set to the **AUTO** mode, **Hold High** and **Hold Low** are unavailable, and the monitor can calculate the respiration rate automatically. When it is set to the **Manual** mode, you can adjust the broken lines in RESP area by the **Hold High** and **Hold Low** items.

9.9 Changing the Size of the Respiration Wave

Select the RESP waveform area to open the **RESP Waveform Setup** menu:

- Select **AMP**, and choose an appropriate value. The bigger the value is, the higher the waveform amplitude will be.
- Select Sweep: select an appropriate setting from the pop-up list.

9.10 Changing the Apnea Alarm Time

The apnea alarm is a high priority red alarm used to detect apneas. The apnea alarm delay time defines the time period between the point where the monitor cannot detect any respiration activity and the indication of the apnea alarm. Users should set it cautiously.

- 1. In the **RESP Setup** menu, select **Apnea Alm**.
- 2. Select the appropriate setting from the popup list.

Chapter 10 Monitoring SpO₂

10.1 Overview

SpO₂ is used to measure arterial blood oxygen saturation, which is the percentage of oxyhemoglobin in the arterial blood. SpO₂ parameter can also provide pulse rate (PR) and a plethysmogram wave (Pleth).

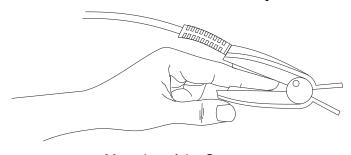
10.2 SpO₂ Safety Information

WARNING

- 1 Do not use the SpO₂ sensors if the packaging or the sensor is damaged and return them to the vendor.
- 2 If the SpO₂ sensor cannot work properly, please reconnect the sensor or change a new one.
- Correct and proper sensor application: if the sensor is too loose, it might compromise the optical alignment, and even cause the sensor to fall off. If the sensor is too tight, (such as the application site is too large or becomes too large due to edema), excessive pressure and local tissue ischemia, hypoxia and lack of nutrition may occur on the application site. Prolonged and continuous monitoring may increase the risk of skin irritations or lacerations. To avoid these damages, users should periodically check surrounding skin of application site according to the patient's condition and pressure sensor, inspect if there is sign of stress-related damage in surrounding tissue, and regularly change the application site. For the patients whose fluid is easy to transfer and/or the patients with systemic or localized edema, users should inspect the skin and change application site more frequently.
- 4 Use only EDAN permitted sensors and extension cables with the monitor. Other sensors or extension cables may cause improper monitor performance and/or minor personal injury.
- 5 High oxygen levels may predispose a premature infant to retrolental fibroplasia. If this is a consideration do NOT set the high alarm limit to 100%, which is equivalent to switching the high limit alarm off.
- 6 When serious arrhythmia is present, the SpO₂ pulse rate may differ from ECG heart rate but this does not indicate an inaccurate PR (SpO₂) value.

NOTE:

- 1 Avoid placing the sensor on extremities with an arterial catheter, or intravascular venous infusion line. When measuring SpO₂ on the limb with inflated NIBP cuff, please turn on the **NIBP Simul** function.
- When a trend toward patient deoxygenation is indicated, analyze the blood samples with a laboratory co-oximeter to completely understand the patient's condition.


- 3 SpO₂ waveform is not directly proportional to the pulse volume.
- 4 The device is calibrated to display functional oxygen saturation.
- 5 A Functional tester or simulator can not be used to assess the SpO₂ accuracy. However, it can be used to demonstrate that a particular monitor reproduces a calibration curve that has been independently demonstrated to meet a particular accuracy.
- 6 If the surrounding temperature increases, the operator should pay attention to the site of poor perfusion, and increase the frequency of checking the skin and changing the measurement site to prevent burns. If the initial skin temperature is less than 35°C, the temperature of all the listed sensors on the skin will not exceed 41°C during working.
- 7 The cumulative use time for the single-patient SpO₂ sensor in a single patient should be less than 30 days.

10.3 Measuring SpO₂

- 1. Select the correct patient category setting (adult/pediatric and neonatal), as this is used to optimize the calculation of the SpO₂ and pulse numerics.
- 2. During measurement, ensure that the application site:
 - has a pulsatile flow, ideally with a good circulation perfusion.
 - has not changed in its thickness, causing an improper fit of the sensor.

Measurement Procedure

- 1. Switch on the monitor.
- 2. Attach the sensor to the appropriate site of the patient finger.
- 3. Plug the connector of the sensor extension cable into the SpO_2 socket.

Mounting of the Sensor

WARNING

Inspect the application site every two to three hours to ensure skin quality and correct optical alignment. If the skin quality changes, move the sensor to another site. Change the application site at least every four hours. For neonate, change the measuring site every 20 minutes.

NOTE:

- 1 Injected dyes such as methylene blue or intravascular dyshemoglobins such as methemoglobin and carboxyhemoglobin may lead to inaccurate measurements.
- Inspect the sensor to ensure that the light emitter and receiver are aligned with each other and there is no gap between the sensor and the finger. All the light emitted by the light emitter must pass through the patient's tissue. The sensor cable should be placed on the back of the hand.
- 3 Clean and remove any substances such as nail polish from the application site. Periodically check to ensure that the sensor remains properly positioned on the patient.

10.4 Measurement Limitations

Certain patient conditions can affect the measurements or cause the loss of the pulse signal.

Inaccurate measurements can be caused but not limited by:

- incorrect sensor application
- high levels of ambient light sources, such as surgical lights (especially those with a xenon light source), bilirubin lamps, fluorescent lights, infrared heating lamps, and direct sunlight
- failure to cover the sensor with opaque material in high levels of ambient light conditions
- dysfunctional hemoglobins
- low peripheral perfusion
- excessive or violent patient movement
- venous pulsations
- intravascular dyes, such as indocyanine green or methylene blue
- externally applied coloring agents (nail polish, dye, pigmented cream)
- defibrillation
- placement of the sensor on an extremity with a blood pressure cuff, arterial catheter, or intravascular line
- electromagnetic interference

Loss of pulse signal can occur for the following reasons:

- the sensor is applied too tightly
- a blood pressure cuff is inflated on the same extremity as the one with the sensor attached
- there is arterial occlusion proximal to the sensor
- low peripheral perfusion

NOTE:

1 To prevent interference from ambient light, ensure that the sensor is properly applied, and cover the sensor site with opaque material.

- 2 Adjacent SpO₂ sensors may interfere with each other (eg, multiple SpO₂ measurements in the same patient). Be sure to cover the sensor with opaque material to reduce cross-interference.
- 3 Move the sensor to a less active site, and keep the patient still, if possible.

10.5 Assessing the Validity of a SpO₂ Reading

You can check the quality of the pleth wave and the stability of the SpO₂ values to assess whether the sensor functions properly and whether the SpO₂ readings are valid. Always use these two indications simultaneously to assess the validity of a SpO₂ reading.

Generally, the quality of the SpO_2 pleth wave reflects the quality of the light signals obtained by the sensor. A wave of poor quality manifests a decline of the signal validity. On the other hand, the stability of the SpO_2 values also reflects the signal quality. Different from varying SpO_2 readings caused by physiological factors, unstable SpO_2 readings are resulted from the sensor's receiving signals with interference. The problems mentioned above may be caused by patient movement, wrong sensor placement or sensor malfunction. To obtain valid SpO_2 readings, try to limit patient movement, check the placement of the sensor, measure another site or replace the sensor.

NOTE:

- The SpO₂ accuracy has been validated in controlled human studies against arterial blood sample reference measured with a CO-oximeter. SpO₂ measurements are statistically distributed; only about two-thirds of the measurements can be expected to fall within the specified accuracy compared to CO-oximeter measurements. The volunteer population in the studies are composed of healthy men and women from age 19 to 37, with various skin pigmentations. Note that the study population was healthy adults and not in the actual intended use population.
- 2 The pulse rate accuracy is obtained by comparison to the pulse rate generated with an arterial oxygen simulator (also an electronic pulse simulator).
- During monitoring, if the monitor's reading differs significantly from the patient's physiological condition, it indicates that the signal may be disturbed, resulting in an inaccurate reading. In this case, the artifact can disguise as a similar reading, causing the monitor to fail to send an alarm. In order to ensure reliable monitoring, it is necessary to regularly check whether the sensor is wearing properly and the signal quality is good.

10.6 SpO₂ Alarm Delay

There is a delay between a physiological event at the measurement site and the corresponding alarm at the monitor. This delay has two components:

- 1. The time between the occurrence of the physiological event and when this event is represented by the displayed numerical values. This delay depends on the algorithmic processing time and the sensitivity setting. The lower the sensitivity configured, the longer the time needed until the numerical values reflect the physiological event.
- 2. The time between the displayed numerical values exceeding an alarm limit and the alarm

indication on the monitor. This delay is the combination of the configured alarm delay time plus the general system delay time.

10.7 Perfusion Index (PI)*

PI is a numeric value indicating perfusion level. It reflects the perfusion level at the monitoring site.

As the measurement of SpO_2 is based on the pulsation caused by the blood flow through the vessel, PI is in relation to the strength of the pulse. Also, you can use PI as a signal quality indicator for the measurement of SpO_2 .

PI is indicated by a value ranging from 0 to 10. The bigger the value is, the better the perfusion and the signal quality will be. The perfusion level and the signal quality are at their maximum when the value reaches 10. When PI is below 2, it indicates the low perfusion and the poor signal quality at the monitoring site; you need to reposition the sensor or find a better site.

The PI value will be displayed in the SpO₂ parameter area.

10.8 Measuring SpO₂ and NIBP Simultaneously

While measuring SpO₂ and NIBP on the same limb simultaneously, the user can set **NIBP Simul** to **On** in **SpO₂ Setup** menu to lock the SpO₂ alarm status until the NIBP measurement ends. If **NIBP Simul** is set to **Off**, low perfusion caused by NIBP measurement may lead to inaccurate SpO₂ readings and therefore cause false physiological alarms.

10.9 Setting Pitch Tone

If tone modulation is on, the PR sound lowers when the SpO_2 level drops. In the SpO_2 Setup menu, select pitch tone to toggle between **On** and **Off**.

10.10 Setting Sensitivity

The different sensitivity indicates different refresh frequency. **High** indicates the refresh frequency of SpO₂ value is the most frequent. To change the sensitivity, please follow the steps:

- 1 Select the **SpO₂ Setup** menu;
- 2 Select **Sensitivity** on the interface and select the desired sensitivity from the popup list.

Chapter 11 Monitoring PR

11.1 Overview

The pulse numeric counts the arterial pulsations that result from the mechanical activity of the heart in beats per minute (bpm). You can obtain a pulse from any measured SpO₂ signal or any arterial pressure.

11.2 Setting PR Source

The monitor provides PR source options. You can select SpO_2 or arterial pressure labels as the PR source in the **PR Source** list on the **PR Setup** menu.

11.3 Setting PR Volume

Select **PR Setup** > **PR Volume**, then select the appropriate setting for the PR volume: five bars represent the maximum volume and one bar represents the minimum volume. If none of bars are selected, the PR volume will be off. Beat frequency of pulse has positive correlation with measurement value.

11.4 Selecting the Active Alarm Source

In most cases, the HR and PR numerics are identical. In order to avoid simultaneous alarms on HR and PR, the monitor uses either HR or PR as its active alarm source. To change the alarm source, select **PR Setup** > **Alarm Source**, then a pop-up box is displayed:

- **HR**: if you want HR to be the alarm source for HR/Pulse.
- **PR**: if you select PR as the active alarm source, the monitor will prompt you to confirm your choice. Be aware that if you select PR as the alarm source, ECG HR alarms are switched off.
- AUTO: If the Alarm Source is set to Auto, the monitor will use the heart rate from the ECG measurement as the alarm source whenever the ECG measurement is switched on and at least one ECG lead can be measured without a technical alarm condition. The monitor will automatically switch to PR for the alarm source if:
 - a valid ECG lead can no longer be measured and
 - a PR source is switched on and available.

The monitor uses the pulse rate from the currently active measurement as system pulse. While PR is the alarm source, all arrhythmia and ECG HR alarms are switched off. If an ECG lead becomes available again, the monitor automatically uses HR as alarm source.

NOTE:

Pulse alarms are only generated when the active alarm source is set to **PR**, a pulse source is set as system pulse and pulse alarms are switched on.

Chapter 12 Monitoring NIBP

12.1 Overview

This monitor uses the oscillometric method for measuring NIBP. It can be used for adult, pediatric and neonatal patients. It is also intended for use with pregnant, including pre-eclamptic patients.

Oscillometric devices measure the amplitude of pressure changes in the occluding cuff as the cuff deflates from above systolic pressure. The amplitude suddenly increases as the pulse breaks through the occlusion in the artery. As the cuff pressure decreases further, the pulsations increase in amplitude, reach a maximum (which approximates to the mean pressure), and then diminish.

The blood pressure measurements determined with this device comply with the American National Standard for Electronic or Automated Sphygmomanometers (ISO 81060-2:2013) in relation to mean error and standard deviation. In clinical investigation method with a reference sphygmomanometer, the fifth Korotkoff sound was used to determine adult diastolic pressure, and the fourth Korotkoff sound was used to determine pediatric diastolic pressure.

12.2 NIBP Safety Information

WARNING

- 1 Do not measure NIBP on patients with sickle-cell disease or any condition where skin damage has occurred or is expected.
- 2 Do not measure NIBP on the arm of the same side with a mastectomy.
- 3 Use clinical judgment to decide whether to perform frequent blood pressure measurements on patients with severe blood clotting disorders because of the risk of hematoma in the limb fitted with the cuff.
- 4 Do not apply the cuff to a limb that has an intravenous infusion or catheter in place. This could cause tissue damage around the catheter when infusion is slowed or blocked during cuff inflation.
- 5 Do not attach the cuff to a limb being used for IV infusions as the cuff inflation can block the infusion, potentially causing harm to patient.
- 6 Do not apply the cuff to a limb where intravascular access or therapy, or an arterio-venous (A-V) shunt is present, otherwise, it may result in injury to the patient.
- 7 Ensure that the correct patient type is selected before performing measurements. Do not apply the higher adult inflation, overpressure limits and measurement duration for neonatal patients. Not using the neonate mode on a neonatal patient can block the blood flow, potentially causing harm to the patient.
- 8 Make sure that the air conduit connecting the blood pressure cuff and the monitor is neither blocked nor tangled.
- 9 Measuring of blood pressure can temporarily cause malfunctioning of other medical monitoring devices on the same limb.
- 10 NIBP readings can be affected by the measurement site, the position of the patient, exercise, or the patient's physiologic conditions.
- 11 Continuous cuff pressure due to connection tubing kinking can block the blood flow, and may result in injury to the patient.

WARNING

12 Verifying the calibration is only applicable for adults, and it cannot be operated in automatic measuring interval. Continuous measuring cannot be operated in automatic measuring interval either.

NOTE:

- 1 It is suggested that the user should not start NIBP measuring when the low battery displays, or the monitor may be turned off automatically.
- 2 If you spill liquid onto the equipment or accessories, particularly if there is a chance that it can get inside the tubing or the measurement device, contact your service personnel.
- 3 Continuous use of the automatic measuring mode for short intervals may lead to the discomfort of patient. Continuous measuring and automatic measuring in neonatal or pediatric mode may result in tissue damage or ischemia to the patient.
- 4 NIBP measurement can be affected by extremes of temperature, humidity and altitude.
- 5 NIBP measurement value should be explained by qualified professionals.
- The pulse rate based on the NIBP measurement may differ from the heart rate based on the ECG waveform. NIBP measures the number of peripheral pulse pulsations, and the heart rate is measured by the electrical signal of the heart. When the electrical signals of the heart occasionally fail to cause the peripheral blood vessels to pulse or the patient's peripheral perfusion is poor, the difference happens.
- 7 The cumulative use time for the single-patient NIBP cuff in a single patient should be less than 24 hours.

12.3 Measurement Limitations

Measurements are impossible with pulse rate extremes of less than 40 bpm or greater than 240 bpm, or if the patient is on a heart-lung machine.

The measurement may be inaccurate or impossible in the following situations:

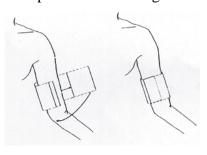
- A regular arterial pressure pulse is hard to detect.
- Patients with cardiac arrhythmias.
- Patients with excessive and continuous movement such as shivering or convulsions.
- Patients with rapid blood pressure changes.
- Patients with severe shock or hypothermia that reduces blood flow to the peripheries.
- Patients with obesity, where a thick layer of fat surrounding a limb dampens the oscillations coming from the artery.
- Patients on an edematous extremity.

12.4 Measurement Methods

There are three methods of measuring NIBP:

- Manual measurement on demand.
- **Auto** continually repeated measurements (between 1 and 480 minute adjustable interval). After the first measurement starts manually, the monitor will automatically measure NIBP as preset interval.
- **Continuous** the measurement will run consecutively in five minutes, then the monitor enters manual mode.

WARNING


Prolonged non-invasive blood pressure measurements in Auto mode may be associated with purpura, ischemia and neuropathy in the limb wearing the cuff. When monitoring a patient, examine the extremities of the limb frequently for normal color, warmth and sensitivity. If any abnormality is observed, stop the blood pressure measurements.

12.5 Measurement Procedures

To obtain accurate measurements, the following operating steps need to be observed:

- 1. Ensure the patient position in normal use, including
- Comfortably seated or lie flat, legs uncrossed;
- Feet flat on the floor;
- Back and arm supported;
- Middle of the cuff at the level of the right atrium of the heart;
- During the measurement, relax as much as possible, neither talking nor applying external pressure against the cuff.
- 2. Connect the air hose and switch on the monitor.

Apply the blood pressure cuff to the patient's arm or leg and follow the instructions below.

Cuff Usage

- Ensure that the cuff is completely deflated.

Apply the appropriate size cuff to the patient (About the cuff size selection, please refer to Section *NIBP accessories*), and make sure that the symbol " Φ " is over the artery. Ensure that the cuff is not wrapped too tightly around the limb. Excessive tightness may cause

discoloration and eventual ischemia of the extremity.

- 3. Check whether the patient type is appropriately selected. Access the **Patient Setup** menu from **Menu**. Turn the knob to select the required patient **Type** in the **Patient Info.** menu.
- 4. Select a measurement mode in the **NIBP Setup** menu. Refer to section *Operation Prompts* for details.
- 5. Press the button on the front panel or shortcut key on the screen to start a measurement.
- 6. Wait until the first reading is taken.

NOTE:

- The width of the cuff is either approximately 40% of the limb circumference or 2/3 of the upper arm length. The inflatable part of the cuff should be long enough to encircle 80%-100% of the limb. The wrong size of cuff can cause erroneous readings. If the cuff size is in question, use another cuff with suitable size to avoid errors.
- 2 If an NIBP measurement is suspect, repeat the measurement. If you are still uncertain about the reading, use another method to measure the blood pressure.
- 3 Please make sure the cuff is well connected. A leak of air may cause measurement error.
- 4 Please select the cuff with the suitable size. An unsuitable cuff may cause incorrect measurements.
- 5 Avoid incursion of liquid into the cuff. If this happens, please desiccate the cuff completely.

12.5.1 Operation Prompts

1. Manual Measuring

Access the **NIBP Setup** menu and set the **Measure Mode** item to **Manual**. Then press the button on the front panel or shortcut key on the screen to start a manual measurement.

2. Automatical Measurement

Access the **NIBP Setup** menu and set the **Measure Mode** item to **Auto**, then press the button on the front panel or shortcut key on the screen to start the automatical measurement according to the selected time interval. Press the button or shortcut key to exit in advance. During the idle period of measurement process, press the button on the front panel or shortcut key on the screen at any time to start a manual measurement. Then press the button on the front panel or shortcut key on the screen to stop manual measurement and the system continues to execute auto measurement program according to the selected time interval.

3. Continuous measurement

Access the **NIBP Setup** menu and pick the **Continuous** item to start a continuous measurement. The continuous measurement will last 5 minutes.

Stopping continuous measurement

During continuous measurement, press the button on the front panel or shortcut key on the screen at any time to stop continuous measurement.

12.5.2 Correcting the Measurement if Limb is not at Heart Level

To correct the measurement if the limb is not at heart level to the displayed value:

Add 0.75 mmHg (0.10 kPa) for each centimeter higher or	Deduct 0.75 mmHg (0.10 kPa) for each centimeter lower or
Add 1.9 mmHg (0.25 kPa) for each inch higher	Deduct 1.9 mmHg (0.25 kPa) for each inch lower

12.6 NIBP Multi-Review Window

To set the display of NIBP measurements, select **NIBP Setup** > **Review**:

- When it is set to **On**, a window for NIBP measurements will be displayed at the waveform area on the main interface, and the size of this window varies depending on the numbers of displayed waveforms.
- When it is set to **Off**, the window is unavailable on the screen.

12.7 Resetting NIBP

When the pressure does not work properly and the system fails to give a message for the problem, pick **Reset** in the **User Maintain > NIBP Maintain** menu to activate self-test procedure, and thus restore the system from abnormal performance.

12.8 Calibrating NIBP

NIBP is not user-calibrated. Cuff-pressure transducers must be verified and calibrated, if necessary, at least once every two years by a qualified service professional. See the Service Manual for details.

12.9 Leakage Test

Leakage test is used to detect the air tightness of the NIBP pump, valve, and trachea. If not, the system will display NIBP leakage. NIBP leak detection should be performed at least once every two years or when you think the measurement is inaccurate.

WARNING

This leakage test other than being specified in the ISO 81060-1 standard is to be used by the user to simply determine whether there are air leaks in the NIBP airway. If at the end of the test the system gives the prompt that the NIBP airway has air leaks, please contact the manufacturer for repair.

Procedure of Leakage Test

1. Connect the cuff securely with the socket for NIBP air hole.

- 2. Wrap the cuff around the cylinder of an appropriate size, don't wrap the cuff around limbs.
- 3. Make sure the patient type has been set to **Adult**.
- 4. Access User Maintain > NIBP Maintain.
- 5. Select **Leakage Test**. Then the prompt **Leak. Test Running** will appear indicating that the system has started the leakage test.

The system will automatically inflate the pneumatic system to about 180 mmHg. After 20 seconds to 40 seconds, if system leakage has detected, the system will automatically open the deflating valve to stop the leak test and indicates **NIBP Leak**. If no system leakage is detected when the pneumatic system is inflated to 180 mmHg, the system will perform a deflation to an approximate value of 40 mmHg and subsequently perform the second phase leak test. After 20 seconds to 40 seconds, the system will automatically open the deflating valve and provide corresponding indication based on the test result.

6. If the alarm information **NIBP Leak** appears, it indicates that the airway may have air leaks. In this case, the user should check for loose connection. After confirming secure connections, the user should re-perform the leakage test. If the failure prompt still appears, please contact the manufacturer for repair.

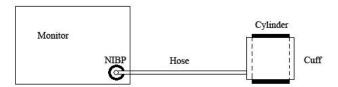


Diagram of NIBP Air Leakage Test

12.10 Setting Inflation Mode

To change the inflation mode:

- 1. Select **NIBP Setup** > **Inflation Mode**;
- 2. Choose **Manual** or **AUTO** from the pull-down list.
 - If **Manual** is chosen, the preset value by users will be adopted as the inflation value when measuring blood pressure.
 - If **AUTO** is chosen, the default value will be adopted as the inflation value when measuring blood pressure.

12.11 Cleaning Mode

To start the cleaning mode, please select **User Maintain** > **NIBP Maintain** > **Cleaning Mode**, click **Start Cleaning** button, at this time the monitor displays: **Make sure the cuff has been removed from the monitor**. After the user's confirmation, cleaning mode starts. The cleaning mode lasts three minutes. In this mode, the monitor displays **Cleaning in progress**, the remaining time of cleaning mode and cuff value are also displayed. When the counting down finishes, the monitor exits cleaning mode automatically, if the user needs to exit the cleaning mode in advance, please click **Stop** button.

When the air pressure is abnormal, the monitor will automatically turn off the cleaning mode and display the prompt message: **Cleaning failed**.

NOTE: Cleaning mode is only available when the patient type is adult.

Chapter 13 Monitoring TEMP

13.1 Overview

Body temperature is measured by means of a thermistor probe (a semiconductor whose resistance changes with temperature) that is applied to the skin or to the rectum.

Two TEMP probes can be used simultaneously to measure two TEMP values and get the temperature difference. The standard configuration is skin probe for adult.

13.2 TEMP Safety Information

WARNING

- 1 Verify probe cables fault detection before the beginning of monitoring phase. Unplug the temperature probe cable of the channe1 from the socket, and then the screen will display the error message **TEMP T1 Sensor Off** and the auditory alarm is activated. It is the same to the other channel.
- 2 Take the TEMP probe and cable carefully. When they are not in use, you should coil up the probe and cable into a loose circle. If the wire inside the cable is tensely pulled, it may cause mechanical damage to the probe and the cable.
- 3 Temperature probes do not need any probe covers; please remember to disinfect the probe after each use on a patient.

NOTE:

- 1 The reference body site temperature is the same as the temperature of the measuring site.
- 2 The cumulative use time for the oral or rectal temperature probe in a single patient should be less than 24 hours.

13.3 Switching T1/T2 On/Off

In **Menu** > **System Setup** > **Module Switch**, T1 or T2 can be switched on/off separately and won't be affected by each other.

13.4 TEMP Monitoring Setup

With a reusable TEMP probe you can plug the probe directly into the monitor. Apply the TEMP probes securely to the patient. Switch on the monitor.

It takes 5 minutes for the body temperature to stabilize.

13.5 Calculating Temp Difference

The monitor can calculate and display the difference between two temperature values by subtracting the second value from the first. The difference is labeled TD.

Chapter 14 Monitoring IBP

14.1 Overview

IBP is measured by means of a catheter inserted directly into the circulatory system. A pressure transducer connected to the catheter converts the mechanical force exerted by the blood into an electrical signal, which is displayed graphically as pressure versus time on a monitor screen or numerically on digital display.

The monitor measures direct blood pressure of one selected blood vessel through two channels, and displays waveforms and pressure of measured direct blood pressure (SYS, DIA and MAP).

14.2 IBP Safety Information

WARNING

- 1 The operator should avoid contact with the conductive parts of the appurtenance when it is connected or applied.
- 2 Disposable IBP transducer or domes should not be reused.
- 3 If any kind of liquid, other than solution to be infused in pressure line or transducer, is splashed on the equipment or its accessories, or enters the transducer or the monitor, contact the Hospital Service Center immediately.
- 4 The longest duration of IBP arterial catheterization is 7 days.
- 5 All invasive procedures have risks to the patient. Use aseptic technique and follow catheter manufacturer's instructions.
- 6 Mechanical shock to the invasive blood pressure transducer may cause severe shifts in zero and calibration, and then cause erroneous readings.

NOTE:

- 1 Use only the pressure transducer listed in the IBP Accessories
- 2 If measuring intracranial pressure (ICP) on a sitting patient, adjust the transducer on the same level with the top of the patient's ear. Incorrect leveling may lead incorrect values.
- 3 Confirm you set correct alarm limit for labels, the alarm limit you set are stored for its label only. Changing label may change the alarm limit.
- 4 Don't perform IBP calibration when a patient is being monitored.
- 5 When using high frequency ventilation, make sure that the ventilator catheter is not connected to or indirectly connected to the arterial catheter at zero pressure. This can lead to less pressure variations, thus interfere the zeroing process.

14.3 Monitoring Procedures

Preparatory steps for IBP measurement:

- 1. Plug the pressure cable into the corresponding socket and switch on the monitor.
- 2. Prepare the flush solution.
- 3. Flush through the system, exhaust all air from the tube, and ensure that the transducer and stopcocks are free of air bubbles.
- 4. Connect the patient catheter to the pressure line, making sure that there is no air present in the catheter or pressure line.
- 5. Position the transducer so that it is at the same level with the patient's heart, approximately mid-axillary line.
- 6. For the label name selection, please refer to Selecting a Pressure for Monitoring.
- 7. To zero the transducer, please refer to Zeroing the Pressure Transducer.

WARNING

If there are air bubbles in the tube system, you should flush the system with the solution again. The bubbles may cause erroneous pressure readings.

14.3.1 Selecting a Pressure for Monitoring

Tell the monitor which pressure you want to monitor by selecting its pressure label. The label is a unique identifier for each type of pressure. When you choose a label, the monitor uses that label's stored settings, for example color, wave scale and alarm settings. The label also determines which algorithm is used to process the pressure signal, so an incorrect label can lead to incorrect pressure values. To select the label, please refer to the following table:

Label	Description
ART	Arterial blood pressure
PA	Pulmonary artery pressure
CVP	Central venous pressure
ICP	Intracranial pressure
LAP	Left atrial pressure
RAP	Right atrial pressure
P1-P2	Alternative non-specific pressure labels

NOTE:

The pressure option is only valid when the label is P1/P2 and does not take effect under other labels.

14.3.2 Zeroing the Pressure Transducer

To avoid inaccurate pressure readings, the monitor requires a valid zero. Zero the transducer in accordance with your hospital policy (at least once per day). You must perform a zero:

• When you use a new transducer or tubing;

- Every time you reconnect the transducer cable to the monitor;
- If you think the monitor's pressure readings are not correct.

When using a pressure module, the zero information is stored in the module.

The zeroing procedure is listed as below:

- 1. Turn off the stopcock to the patient.
- 2. Vent the transducer to atmospheric pressure, to compensate for the static and atmospheric pressure exerted on the transducer.
- 3. In the setup menu for the pressure, select **Zero**.
- 4. When you see the message **Zero Ok**, please close the stopcock to atmospheric pressure, and open the stopcock to the patient.

14.3.3 Troubleshooting the Pressure Zeroing (Taking Art for Example)

The status message lists the probable cause of an unsuccessful calibration.

Message	Corrective Action
Art ZERO FAIL	Make sure that the transducer is not attached to the patient.
Art SENSOR OFF, FAIL	Make sure that transducer is not off, and then proceed zeroing.
IN DEMO, FAIL	Make sure that the monitor is not in DEMO mode. Contact service technician if necessary.
PRESSURE OVER RANGE,	Make sure that the stopcock is vented to atmosphere. If the
FAIL	problem persists, please contact service technician.
PULSATILE PRESSURE	Make sure that the transducer is vented to air, not connected
ZERO FAIL	to a patient, and try again.

14.3.4 IBP Calibration

IBP is not user-calibrated. Calibration should be performed by a qualified service professional as frequently as dictated by your Hospital Procedures Policy.

14.4 Changing the IBP Waveform Ruler

The top, middle and bottom rulers are available for each channel of IBP waveform. Users can adjust the top, middle or bottom rulers manually:

- 1. Open the menu **Wave Setup** of IBP by clicking on the IBP waveform area.
- 2. Select a suitable ruler from the options **TopRuler**, **MidRuler** and **BotRuler**.

14.5 IBP Waveform Overlapping

The monitor can display IBP overlapped waveforms. To set IBP waveform overlapping:

- 1. Select Menu > Maintenance > User Maintain > Other Setups, and set IBP Wave Overlapping to On or Off.
- 2. Click the IBP waveform area to show the IBP **Wave Setup** menu.
- 3. Select **Add IBP Waves** and then select the IBP waves for overlapping from the pop-up list. A maximum of four overlapping waveforms can be displayed.
- 4. After exiting the interface, the main screen will display the overlapped IBP waves. The flashing label is the main label of the waveform area.

Click the IBP overlapping waveform area on the main screen, and then select **Setup Rulers**. The user can select a suitable ruler for the overlapped waveforms from the options **TopRuler** and **BotRuler**.

14.6 Measuring PAWP

PAWP, Pulmonary Artery Wedge Pressure, used to assess the cardiac function, is obtained by introducing a balloon-tipped pulmonary artery flotation catheter into the pulmonary artery. When the catheter is in one of the smaller pulmonary arteries, the inflated balloon occludes the artery allowing the monitor to record changes in the intrathoracic pressures that occur throughout the respiration cycle. The user can view the PAWP measurement result via connected CMS.

14.6.1 Measurement Procedures

Pulmonary Artery Wedge Pressure (PAWP) values are affected by fluid status, myocardial contractility, valve and pulmonary circulation integrity. The most accurate PAWP values are obtained at the end of the respiration cycle when the intrathoracic pressure is fairly constant. You can use the respiration waveform as a reference when assessing the PAWP waveform, to ensure constant measurement timing relative to the respiratory cycle.

To start the measurement:

- 1. On the standard screen interface, select the PA parameter window to enter its setup menu. Then, select **Setup** > **PAWP Activate** to open the PAWP measurement window.
- 2. Prepare and check the accessories according to your hospital policy.
- 3. Wedge the flotation catheter into the pulmonary artery. Then inflate the balloon and pay attention to PA waveform changes on the screen.
- 4. After obtaining a stable PAWP waveform, press **Freeze** to freeze the waveform. In freeze status, you can adjust the PAWP scale to an appropriate position by selecting **Measure** and moving the cursors up and down according to the clinical experience. Select **Confirm** to store the PAWP, CVP, HR values. To review the frozen waveform, press **s Browse** and rotate the rotary knob clockwise or counter-clockwise as desired. If you need to review the stored PAWP, CVP, HR values, select **PAWP Review**.
- 5. Deflate the balloon when the monitor prompts you "Please deflate the balloon!".
- 6. If you need to start a new measurement, select **Remeasure**.
- 7. Click on **Exit** or select **Setup** > **PAWP Exit** to exit.

WARNING

- 1 Prolonged inflation can cause pulmonary hemorrhage, infarction or both. Inflate the balloon for the minimum time necessary to get an accurate measurement.
- If the PAWP (mean) is greater than the PA (systolic), deflate the balloon and report the incident in accordance with hospital policy, because the pulmonary artery could be accidently ruptured, and the PAWP value derived will not reflect the patient's hemodynamic state, but will merely reflect the pressure in the catheter or balloon.
- 3 The pressure receiver in the catheter records the pressure change that occurs only at the front of the obstruction.
- 4 Due to the short measurement delay, do not use sidestream CO₂ as a direct reference to determine the end point of the breath in the pressure curve.
- If the balloon is not inflated but the pulmonary artery floating catheter enters the wedge position, the pulmonary artery pressure waveform becomes wedge-shaped. Follow the standard steps to take appropriate action to correct this situation.
- 6 PAWP measurement is not applicable to pediatric and neonate patients.

14.7 Calculating CPP

CPP is calculated by subtracting MAP and ICP, it means: CPP=MAP-ICP.

14.7.1 Calculation Procedures

To start CPP calculation:

- 1. Click the ICP parameter area to enter into **ICP Options** interface, select **Setup** to enter into **ICP Setup** > **CPP Source**; CPP source is defaulted as the currently opened artery, it can be selected as **Art**, **P1** or **P2**. If there is more than one arterial pressure at the same time, the priority level should be: Art > P1 > P2.
- 2. Take P1 as example: if P1 is selected as CPP Source, when MAP and ICP are both measured, ICP area will display CPP and its value as below picture, unit is same as ICP. Invalid CPP will display "-?-". CPP will be closed if exit ICP parameter.

14.8 Calculating PPV

Pulse Pressure Variation (PPV) is calculated from the specific arterial pressure values, which reflects the variation between the maximal pulse pressure and the minimum pulse pressure in 30 seconds. Pulse pressure is affected by left ventricular-stroke volume, arterial resistance and arterial compliance.

WARNING

- The clinical value of the derived PPV information must be determined by a physician. According to recent scientific literature, the PPV information is restricted to sedated patients who receive controlled mechanical ventilation and without arrhythmia. Whether the calculation results in other situations are clinically significant, applicable and reliable must be determined by a physician.
- 2 In below situations, the calculated PPV value may be inaccurate:
 - the respiration rate is lower than 8 rpm
 - the tidal volume during ventilation is lower than 8 ml/kg
 - patients have acute right ventricular functional disorder (pulmonary heart disease)
- 3 PPV measurement has been validated only for adult patients.

PPV is calculated according to the following equation:

PPV= (PPmax - PPmin)/(PPmax + PPmin)/2) * 100%

To select an arterial pressure as PPV source:

- 1. Click the PPV parameter area to enter **PPV Setup** menu.
- 2. Select Art, P1, P2, or AUTO as PPV Source.

Only when P1 and P2 are arterial pressure can they be selected as PPV source. When it is set to **AUTO** and if there is more than one arterial pressure at the same time, the priority level should be: Art > P1 > P2.

Chapter 15 Monitoring CO₂

15.1 Overview

The monitor provides the sidestream and mainstream methods for CO₂ monitoring. EDAN EtCO₂ module is used for sidestream measuring.

The principle of CO_2 measurement is primarily based on the fact that CO_2 molecule can absorb 4.3µm infrared ray. Absorption intensity is proportional to CO_2 concentration of patient sample, the CO_2 concentration will compute according to the detecting CO_2 absorption intensity of patient sample.

Sidestream measurement takes a sample of the respiratory gas with a constant sample flow from the patient's airway and analyzes it with a remote CO_2 sensor. You can measure Sidestream CO_2 using the monitor's built-in CO_2 measurement. Respiration rate is calculated by measuring the time interval between detected breaths.

15.2 CO₂ Safety Information

WARNING

- 1 Do not use the device in the environment with flammable anesthetic gas.
- 2 The device should be used by trained and qualified medical personnel authorized by EDAN.
- 3 Nitrous oxide, elevated levels of oxygen, helium, xenon, halogenated hydrocarbons, and barometric pressure can influence the CO₂ measurement.
- 4 The monitor will be damaged if any pipeline from the CO₂ module's air tube /the air inlet /the air outlet is plugged by water or other materials.
- 5 The accuracy of the CO₂ measurement will be affected by the following reasons: the airway was highly obstructed; the leakage of air way connection or quick variation of environment temperature.
- 6 Follow precautions for electrostatic discharge (ESD) and electromagnetic interference (EMI) to and from other equipment.
- 7 When using mechanical ventilation, gas compensation should be well set. Inappropriate setting may cause incorrect measurement result.
- 8 Do not place the sensor cables or tubing in any manner that may cause entanglement or strangulation.
- 9 EDAN EtCO₂ module is equipped with automatic air pressure compensation, and manual setting is not required.
- 10 Leakage in the respiratory system or sampling system may result in a significant low display of the EtCO₂ value. Always keep all components connected firmly and check for leaks according to standard clinical procedures.
- 11 Don't measure CO₂ while nebulized medications are being delivered.
- 12 The CO₂ module temporally stops measuring during zeroing.

WARNING

13 The EtCO₂ reading is not always closely related to the paCO₂ value, especially in neonatal patients, and patients with pulmonary disease, with pulmonary embolism or inappropriate ventilation.

NOTE:

- 1 After the low battery alarm appears, please do not start the CO₂ measurement, or the monitor may turn off for the low capacity of battery.
- 2 For disposal of hospital waste such as accumulated fluids, calibration gases, sampled gases, where not otherwise specified, follow local regulations regarding disposal of hospital waste.
- 3 If the measurement or sensor fails, stop measurement before the qualified service personnel solves the problem.
- 4 The cumulative use time for the single-patient sampling line in a single patient should be less than 30 days.

15.3 Monitoring Procedures

15.3.1 Zeroing the Sensor

EDAN EtCO₂ module itself has automatic zero function, only when the measurement is abnormal or measurement results are doubtful, the user can perform manual zero as following steps:

- 1. Wait until the monitor's warm-up message disappears; keep the monitor away from CO₂ source.
- 2. In the CO₂ Setup menu, set Work Mode to Measure.
- 3. Select **Zero Calibration** in **CO₂ Setup** menu.
- 4. After the zeroing calibration is completed, the zeroing message disappears, and the CO₂ monitoring can be performed.

15.3.2 Sidestream CO₂ Module

15.3.2.1 Measurement Steps

1. Fix the water trap to the water trap holder on the left side of the monitor. Confirm it is well fixed.

- 2. Connect the sampling cannula or the sampling line to the water trap.
- 3. Set Work Mode to Measure.
- 4. For intubated patients, an airway adapter is required. For non-intubated patients, place the nasal cannula or the sampling mask onto the patient.

Place the Nasal Cannula

CAUTION

- The water trap collects water drops condensed in the sampling line and therefore prevents them from entering the module. If the water trap is nearly filled, you should replace it to avoid blocking the airway.
- 2 Based on a sample gas temperature of 37 °C, a room temperature of 23 °C and sample relative humidity of 100%, the water trap will be filled after approximately 90 hours with the flowrate of 100 ml/min, approximately 130 hours with the flowrate of 70 ml/min, and approximately 180 hours with the flowrate of 50 ml/min. In clinical practice, the water trap can be used for a longer time before it is filled. It is recommended to replace the water trap once every month.
- When replacing the water trap or suspecting the measurement value, please check if the O-rings of the water trap holder are normal and well installed. If the O-rings get damaged or loose, contact EDAN's service staff.
- 4 To prevent the module from abnormal work, please ensure the water trap detection button is not mistakenly touched.
- 5 Please replace and discard the water trap when blocking. Don't reuse it, otherwise the reading is not accurate and even the device may be damaged.

CAUTION

The sample gas flowrate 50 ml/min is only applicable to patients whose respiratory rate ranges from 0 rpm to 40 rpm.

NOTE:

- Disconnect the water trap from the holder or set Work Mode to Standby when the module is not in use.
- 2 To avoid patient cross infection, do not connect the exhaust tube to the ventilator circuit. If the sampled gas is returned to the breathing system, always use the bacterial filter of the sample gas return kit.

15.3.2.2 Removing Exhaust Gases from the System

WARNING

Do not connect the exhaust tube to the ventilator circuit, connect the outlet to a scavenging system, cross infection can occur if sampling gas is returned to the breathing system. When using the sidestream CO_2 measurement on patients who are receiving or have recently received anesthetics, please avoid exposing medical staff to anesthetics.

Use an exhaust tube to remove the sample gas to a scavenging system. Attach it to the sidestream sensor at the outlet connector.

15.4 Setting CO₂ Corrections

Temperature, water vapor in the patient's breath, barometric pressure, and the proportions of O_2 , N_2O and Helium in the mixture all influence CO_2 absorption. If values seem inaccurately high or low, check that the monitor is using the appropriate corrections.

The following items are available in the CO₂ Other Setup menu: N₂O Compen., O₂ Compens., Anest. Agent, Vapor Compen. and Pump Rate. The concentration of compensated gas should be set based on the current gas concentration which is supplied for patient. As for O₂ and N₂O, make the supplied gas concentration multiply to its volume to get the concentration. For instance, supply 100% O₂, and its volume is 60%, then O₂ compensation is: 100%*60%=60%. AG concentration is decided by anaesthesia apparatus. After settings, the interface will display a dialog box: Confirm to change the settings? And the detailed settings are displayed under the warning. Click Yes to confirm, and click No to cancel the settings.

NOTE:

Make sure compensation value is correctly set, otherwise the measurement accuracy may be affected.

15.5 Setting Apnea Alarm Time

This determines the time limit after which the monitor gives an alarm if the patient stops breathing.

- 1. Select **CO₂ Setup** > **Apnea Alm**;
- 2. Choose the apnea alarm time from the pop-up list.

WARNING

Safety and effectiveness of the respiration measurement method in the detection of apnea, particularly the apnea of prematurity and apnea of infancy, has not been established.

15.6 Setting CO₂ Waveform

Open the menu **CO₂ Waveform Setup** by clicking on the CO₂ waveform area:

- Choose **Mode** and set it to **Curve** or **Filled** from the pop-up list;
- Choose **Sweep** and select a suitable setting from the pop-up list. The bigger the value is, the wider the waveform will be.

Chapter 16 Monitoring C.O.

16.1 Overview

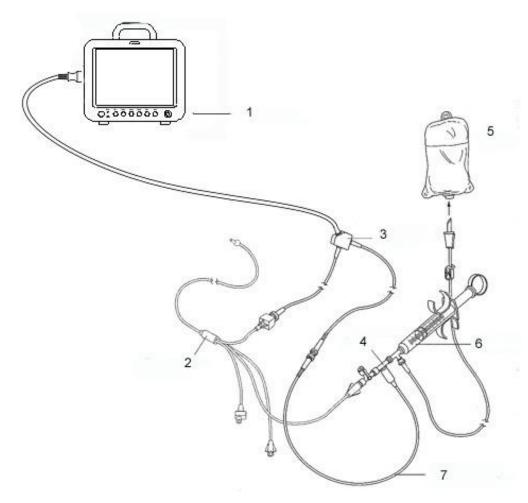
The cardiac output (C.O.) measurement invasively measures cardiac output and other hemodynamic parameters by using the Thermodilution method. The Thermodilution method is to inject a cold solution into the blood circulation system and measure the temperature changes caused by the cold solution through the thermistor of the pulmonary artery floating catheter, and the C.O. value is calculated by using the temperature dilution curve.

As C.O. is a variable value, a series of measurements must be carried out to obtain a reliable and average C.O. value. Always use the average of multiple measurements for thereapy decisions. The monitor can save a maximum of 6 measurement results.

16.2 C.O. Safety Information

WARNING

- 1 Make sure that appurtenance applied is in conformity with relevant Medical Device Safety Requirements.
- 2 Appurtenance should be avoided from contact with conductive metal body when being connected or applied.
- 3 All invasive procedures involve risks to the patient. Use aseptic technique and follow catheter manufacturer's instructions.
- 4 The C.O. measurement results may be incorrect during electrosurgery.
- 5 C.O. floating catheter shall be removed or reinserted after 3 days.

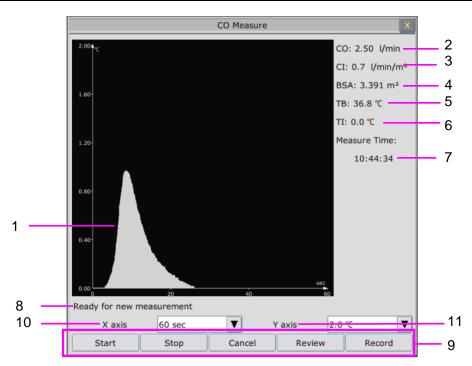

NOTE:

- Please set injection switch well. The calculation of the cardiac output is based on the state of the injection switch at the end of the measurement. Therefore, after the selection of the injection switch is completed, don't change until the measurement is completed.
- 2 Please start C.O. measurement after blood temperature is stable, otherwise the measurement may fail.
- 3 To replace the catheter thermistor, please enter the catheter computation coefficient into the **Constant** item according to the instruction.
- 4 C.O. measurement is not applicable to pediatric and neonate patients.

16.3 C.O. Monitoring

Preparing Measurement:

- 1. Plug the C.O. interface cable into the C.O. socket and turn on the monitor.
- 2. Attach the injective probe connector and catheter thermistor connector to the appropriate parts of the cardiac output interface cable.


1: Monitor; 2: Thermodilution Catheter; 3: Cardiac Output Cable; 4: Injectate Sensor Housing; 5: Injectate; 6: Delivery System; 7: In-line injectate Temperature probe.

C.O. Sensor Connection

- 3. Open the patient information window to confirm the patients' height and weight.
- 4. In C.O. Setup menu, set:
- **C.O. Constant**: The computation constant is associated with catheter and injectate volume. When the catheter is changed, please adjust **Constant** in the **C.O. Setup** menu based on product description provided by the manufacturer. After user's confirmation, the setup takes effect.
- **INJ. TEMP Source**: Select **Auto** or **Manual** from the list, when set as **Manual**, the system directly displays the injectate temperature from INJ. TEMP. Ensure INJ. TEMP is correct, otherwise the C.O. measurement may be affected. When set as **Auto**, the system obtains the injectate temperature through sampling.

Performing C.O. Measurement

1. Pick the **C.O. Measure** item in the **C.O. Option** menu.

1	Measurement curve	10	X axis: Change the Scale X (time) value. Two
2	Cardiac Output		modes are available: 0 s to 30 s, 0 s to 60 s. If you start measurement in the 0 s to 30 s mode, it will
3	Cardiac Index		be switched to 0 s to 60 s mode automatically if the
4	Body Surface Area		measurement cannot finish within 30 seconds. After the switch, no further adjustment can be
5	Blood Temperature		made to the Scale X.
6	Injectate Temperature	11	Y axis: Change the scale Y (temperature) value.
7	Start time of the measurement		Three modes are available: 0 °C to 0.5 °C, 0 °C to 1 °C, 0 °C to 2.0 °C. Adjust the scale by the
8	Prompt message area		temperature differences. A smaller scale results in
9	Function keys		a larger curve.

The functional keys on the C.O. measure window are explained in the following table:

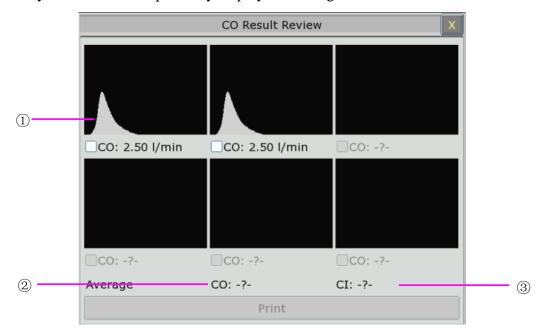
Start: Start a measurement

Stop: If the blood temperature cannot resume in a considerably long time, the measurement could not stop automatically. Use this button to stop the measurement and display the C.O., CI calculation result.

Cancel: Cancel the processing measurement or cancel the result after measurement.

Record: Print out the curve.

Review: Enter the Review window


2. Measurement should be taken when the message "**Ready for new measurement**" appears on the screen. Press the **Start** button, and then start injection. The thermodilution curve, current blood temperature and the injectate temperature are displayed during the measurement. Curve drawing will stop automatically when the measurement finishes, and the C.O. and CI (2 and 3 in the above figure) will be calculated and displayed on the screen. The monitor will display C.O. in

the parameter area and the start measurement time (7 in the above figure).

To ensure the accuracy of the measurement, it is suggested that a reasonable interval should take place between two consecutive measurements. The length of the interval can be set in the C.O. Setup menu (Time unit: second). The interval time counter is displayed on the screen. The next measurement cannot be performed until the time reduces to zero and a message **Ready for new measurement** appears. The adjustable range of **Interval** is: 5 to 300 seconds.

Repeat this procedure until you have completed the measurements you want.

A maximum of six measurements can be saved. If you perform additional measurements, the earliest measurement will be automatically deleted when a seventh curve is saved. In C.O. review window, select required curves from the 6 measurement curves, and the monitor will automatically calculate and respectively display the average values of C.O. and C.I. as following:

Window for C.O. Edit

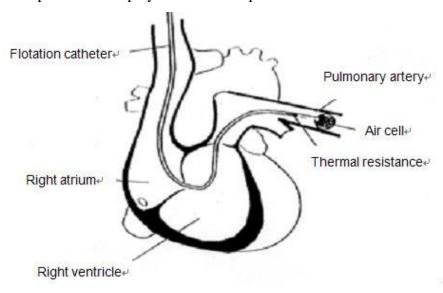
◆ Contents displayed in the window:

1	Six curves of the six measurements and C.O. value
2	Average value of C.O.
3	Average value of CI

WARNING

- 1 Make sure that the computational constant for the measurement is appropriate to the catheter used.
- 2 Before a C.O. measurement is initiated, check the accuracy of patient setup. The calculation of C.O. is related to the patient height, weight, and catheter computation coefficient; therefore, incorrect input will lead to error in calculation.

NOTE:


- 1 The blood temperature alarm will not function during C.O. measurement. It will resume automatically when the measurement is over.
- 2 It is strongly recommended that the user must push the injector within four seconds after pressing the **Start** button.
- It is strongly recommended that you wait at least 1 minute (or longer depending on the patient's clinical condition) before starting the next measurement.

16.4 Blood Temperature Monitoring

Blood temperature monitoring can function when C.O. measurement is not taken. The blood temperature is measured by the thermistor situated in the distal end of the flotation catheter in the pulmonary artery.

The blood temperature alarm function will not work during the C.O. measurement. When the measurement ends, the function will automatically resume.

The current blood temperature is displayed in the C.O. parameter area.

Thermodilution Catheter Site

Chapter 17 Freeze

17.1 Overview

When monitoring a patient, the user may freeze the waveforms and examine them. Generally, the user can review a frozen waveform of a maximum of 120 seconds. The freeze function of this monitor has the following features:

- Freeze status can be activated on any operating screen.
- Once entering the Freeze status, the system exits all other operating menus. Besides, the system freezes all waveforms in the Waveform area of the Basic Screen, and also freezes Full Lead ECG waveforms and extra waveforms on the Full Lead ECG interface (if any). Nevertheless the Parameter area refreshes normally.
- The frozen waveforms can be reviewed and recorded.

17.2 Entering/Exiting Freeze Status

17.2.1 Entering Freeze Status

In the Non-Freeze status, press the button on the control panel of the monitor or select the shortcut key to exit the current menu. Press the button or select the shortcut key again, freeze status is entered and the popup **Freeze** menu is displayed. In Freeze status, all waveforms are frozen and will no longer be refreshed.

17.2.2 Exiting Freeze Status

In the Freeze status, executing any of the following operations will command the system to exit the Freeze status:

- Exit the **Freeze** menu;
- Press the button on the control panel or select the shortcut key again;
- Execute any operation that may trigger the adjustment of the screen or the display of a new menu.

After exiting Freeze status, the system will clear screen waveforms and resume displaying real-time waveforms. In the Screen Refresh mode, the system will sweep the waveforms from left to right in the Waveform Area.

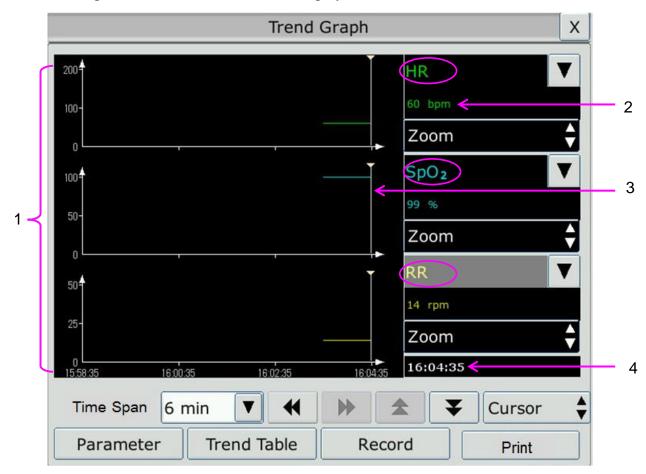
Press the button on the control panel or select the shortcut key, and the **Freeze** menu will appear on the bottom part of the screen. At the same time, the system freezes the waveforms.

NOTE:

Pressing the button or select the shortcut key repeatedly over a short period of time may result in discontinuous waveforms on the screen.

17.3 Reviewing Frozen Waveform

By moving the frozen waveform, you may review a waveform of 120 seconds before it is frozen. For a waveform of less than 120 seconds, the remaining part is displayed as a straight line. Select **Time** on the **Freeze** menu and use the up/down arrow keys to move the frozen waves so that you can review the other parts of the frozen waves not displayed on the current screen.


Chapter 18 Review

The monitor provides 120-hour trend data of all parameters, storage of 1200 NIBP measurement results, 200 alarm events, 200 arrhythmia events, and 50 sets of 12-lead analysis results. This chapter gives detailed instruction for review of all data.

18.1 Trend Graph Review

To review the trend graph, please press the **Trend Graph** key on the screen or select **Menu** > **Review** > **Trend Graph**.

In the trend graph, the y-axis stands for the measurement value and x-axis stands for the time. With the exception of NIBP, other trends are displayed as continuous curves.

- 1 Trend curve area
- 2 Trend data: displays measurement values at the cursor indicated time.
- 3 Cursor
- 4 Cursor time

In the trend graph review window:

- Select **Parameter** and you can choose the required parameters to be displayed in the trend graph.
- To display a different parameter's trend, you can either:

- Select beside the parameter name and choose the desired parameter from the pop-up list (as shown in red circle above).
- ◆ Press the symbols **★** and **▼** to switch parameters in batch.
- Select **Zoom** to adjust the trend scale. Once the trend scale on the trend graph review interface is adjusted, the trend scale of the corresponding parameter in **TrendScreen** of the main interface will also change.
- Select Time Span to change the length of trend data displayed on the current screen. 6 min,
 12 min, 30 min, 1 h, 2 h, 4 h, 6 h, 12 h, 24 h, 36 h and 48 h are optional.
- Select beside Cursor to move the cursor left or right.
- Select and to scroll the screen left and right manually to browse the trend graph.
- Select **Trend Table** to switch to the trend table interface.
- Select **Record** to print out the currently displayed trends by the recorder.
- Select Print to print out the trend graph report by the printer.

18.2 Trend Table Review

To review the trend table, please press the **Trend Table** key on the screen or select **Menu** > **Review** > **Trend Table**.

In the trend table review window:

- Select **Parameter** and you can choose the required parameters to be displayed in the trend table.
- Select Interval to change the interval of the trend data. 1 s, 5 s, 30 s, 1 min, 3 min, 5 min, 10 min, 15 min, 30 min, 60 min and NIBP are optional. Select NIBP to view the trend data according to the NIBP measurement time.
- Select , , and to scroll the screen manually to browse the trend table.
- Select **Trend Graph** to switch to the trend graph interface.
- Select **Record** to print out the currently displayed trends by the recorder.
- Select **Record All** to print out all the trends by the recorder.
- Select **Print** to print out the trend table report by the printer.

18.3 NIBP Review

To review the NIBP measurement data, please press the **NIBP Review** key on the screen or select **Menu** > **Review** > **NIBP Review**.

In the NIBP review window:

■ Select **Unit** to change the pressure unit.

- Select and to browse more NIBP measurement data.
- Select **Record** to print out the NIBP measurement data by the recorder.
- Select **Print** to print out the NIBP review report by the printer.

18.4 Alarm Review

To review the alarm event, please press the **Alarm Review** key on the screen or select **Menu** > **Review** > **Alarm Review**.

In the alarm review window:

- Select **Event Type** to choose the required parameter from the popup list and the user can review alarm event of the specific parameters.
- Select **Time Index** to set end time of alarm review.
 - **Current Time**: the alarm events occurring before the current time are displayed on the alarm event review interface.
 - User Define: the user can define the review time by setting time box displayed on the interface. The alarm events occurring before the User Define option are displayed on the alarm event review interface.
- Select and to browse more alarm events.
- Select **Record** to print out the alarm events by the recorder.
- Select **Print** to print out the alarm event report by the printer.

NOTE:

The monitor can store a maximum of 200 alarm events. As soon as the alarm event storage is full, the earliest alarm event will be replaced by the latest one.

18.5 ARR Review

To review the ARR alarm event, please press the **ARR Review** key on the screen or select **ECG Setup** > **ARR Analysis** > **ARR Review** or **Menu** > **Review** > **ARR Review**.

In the ARR review window, the latest arrhythmia events are displayed. Select and to browse more ARR alarm events. You may select an alarm event and access the alarm review interface to get more information. On the alarm review interface, you can:

- Right or left shift the waveform to review the complete 8-second waveform.
- Select **Record** and output the arrhythmia waveform by the recorder.
- ◆ According to the actual clinical needs, select another name from the pull-down list of **Rename** for the arrhythmia event. Confirm the changes to make the settings take effect.
- Select **Delete** to remove a specific arrhythmia event.
- ◆ Select **Alarm List** or **Exit** to get back to the arrhythmia review interface.

NOTE:

- 1 If there are more than 200 arrhythmia events, the monitor will only keep the recent ones.
- 2 The name of arrhythmia event will be shown on the alarm status area.
- 3 The renaming is only available for the ARR alarm event of the current patient, not for that of the history patient.

18.6 12-Lead Analysis Review

To review the 12-lead analysis result, please press the **Analysis Review** key on the screen or select **Menu** > **Review** > **Analysis Review**.

In the 12-lead analysis review window:

- The user can switch between results and waveforms. Select **Waveform** to review the analysis waveforms and **Result** to review the analysis results.
- Select **Delete** to delete the analysis results displayed on the current screen.
- Select and to browse more analysis results or waveforms.
- Select **Record** to print out the analysis results by the recorder.
- Select **Print** to print out the analysis report by the printer.

Chapter 19 Calculation and Titration Table

The monitor provides calculation and record function and titration table. Calculations are patient data that are not directly measured but calculated by the monitor.

The monitor can perform drug calculation, hemodynamic calculation, oxygenation calculation, ventilation calculation and renal function calculation, and also support record function.

NOTE:

- The drug calculation function acts only as a calculator. The patient weights in Drug Calculation menu and in Patient Information menu are independent of each other. Therefore changing the Weight in Drug Calculation menu will not change the weight in the Patient Information menu.
- 2 The calculation results are for reference only and the calculation significance must be determined by the physician.

WARNING

The correctness of the input parameters and the suitability of the calculated results should be carefully verified. EDAN is not liable for any consequences arising from input or operation errors.

19.1 Drug Calculation

19.1.1 Calculation Procedures

- 1. The drug calculation window is displayed by selecting **Menu** > **Common Function** > **Calculation** > **Drug Dose**.
- 2. Select the right pull-down box of the **Drug** option and select the required drug name among the 15 drugs which are listed as follows. And the drug name of **Drug A**, **Drug B**, **Drug C**, **Drug D** and **Drug E** can be defined by the user.
 - Drug A, Drug B, Drug C, Drug D and Drug E
 - Aminophylline
 - Dobutamine
 - Dopamine
 - Epinephrine
 - Heparin
 - Isuprel
 - Lidocaine
 - Nipride
 - Nitroglycerin
 - Pitocin

- 3. The system generates values that can't be treated the calculation results. The user must enter the correct parameter value based on the doctor's instruction.
- 4. Manually enter the value of patient weight or directly obtain the value from the monitor by selecting **Get Info**.
- 5. Enter the correct parameter value.
- 6. Confirm whether the calculation result is correct.

The following formulas are applied to dose calculation:

Concentrate = Amount / Volume

INF Rate = DOSE / Concentrate

Duration = Amount / Dose

Dose = Rate \times Concentrate

DRIP Rate = INF Rate $/60 \times DROP$ Size

19.1.2 Calculation Unit

Each drug has the fixed unit or unit series to calculate. Among the same unit series, the unit binary varies with the entered parameter value.

The calculation units of the drugs are listed as follows:

Drug	Unit
DRUG A, DRUG B, DRUG C, Aminophylline, Dobutamine, Dopamine, Epinephrine, Isuprel, Lidocaine, Nipride, Nitroglycerin	g, mg, mcg
DRUG D, Pitocin, Heparin	Ku, mu, Unit
DRUG E	mEq

When defining a drug, select Drug A, Drug B, Drug C, Drug D, and Drug E based on the unit series.

NOTE:

- 1 The drug calculation is displayed as invalid value before the user edits the drug name and patient weight, and the user can't enter any value.
- 2 Drip Rate and Drop Size are invalid in the neonatal mode.

19.1.3 Titration Table

After completing the drug calculation, the user can open the **Titration** on the **Drug Dose** interface.

The user can change the following items in the titration table:

- Basic
- Step

Dose Type

The data in the titration table will vary with the changes above. And the user can perform the following:

- Select **4** and **b** to observe more data.
- Record the data displayed in the current window by selecting **Record**.

19.2 Hemodynamic Calculation

19.2.1 Calculation Procedure

- 1. The hemodynamic calculation interface is displayed by selecting **Menu** > **Common Function** > **Calculation** > **Hemodynamics**.
- 2. Manually enter the values required on this interface. You can also directly obtain the values of HR, C.O., PA MAP, CVP, and PAWP if they are available from the monitor by selecting **Get Info**.
- 3. Select **Calculate** to output parameter value.

19.2.2 Input Parameters

Items	English Full Name/Description
PAWP	Pulmonary artery wedge pressure
CVP	Central venous pressure
C.O.	Cardiac output
HR	Heart rate
EDV	End-diastolic volume
AP MAP	Mean Artery Pressure
PA MAP	Pulmonary artery mean pressure
Height	/
Weight	

19.2.3 Output Parameters

Items	English Full Name/Description
CI	Cardiac index
BSA	Body surface area
SV	Stroke volume
SVI	Stroke volume index
SVR	Systemic vascular resistance

Items	English Full Name/Description
SVRI	Systemic vascular resistance index
PVR	Pulmonary vascular resistance
PVRI	Pulmonary vascular resistance index
LCW	Left cardiac work
LCWI	Left cardiac work index
RCW	Right cardiac work
RCWI	Right cardiac work index
LVSW	Left ventricular stroke work
LVSWI	Left ventricular stroke work index
RVSW	Right ventricular stroke work
RVSWI	Right ventricular stroke work index
EF	Ejection fraction

19.3 Oxygenation Calculation

19.3.1 Calculation Procedure

- $1. \quad Select\ Menu > Common\ Function > Calculation > Oxygenation.$
- 2. Manually enter the values required on this interface. You can also directly obtain the values of patient height, patient weight, C.O. and FiO₂ if they are available from the monitor by selecting **Get Info**.
- 3. Select **Calculate** to output parameter value.

19.3.2 Input Parameters

Items	English Full Name/Description
C.O.	Cardiac output
FiO ₂	Percentage fraction of inspired oxygen
PaO ₂	Partial pressure of oxygen in the arteries
PaCO ₂	Partial pressure of carbon dioxide in the arteries
SaO ₂	Arterial oxygen saturation
PvO ₂	Partial pressure of oxygen in venous blood
SvO_2	Venous oxygen saturation
Hb	Hemoglobin
CaO ₂	Arterial oxygen content
CvO ₂	Venous oxygen content

Items	English Full Name/Description
VO ₂	Oxygen consumption
RQ	Respiratory quotient
ATMP	Atmospheric pressure
Height	
Weight	/

19.3.3 Output Parameters

Items	English Full Name/Description
BSA	Body surface area
VO ₂ calc	Calculated oxygen consumption
C (a-v) O ₂	Arterial venous oxygen content difference
O ₂ ER	Oxygen extraction ratio
DO_2	Oxygen transport
PAO ₂	Partial pressure of oxygen in the alveoli
AaDO ₂	Alveolar-arterial oxygen difference
CcO ₂	Capillary oxygen content
Qs/Qt	Venous admixture
C.O. calc	Calculated cardiac output
PaO ₂ /FiO ₂	PaO ₂ /FiO ₂
PaO ₂ /PAO ₂	PaO ₂ /PAO ₂
AaDO ₂ /PaO ₂	AaDO ₂ /PaO ₂
DO ₂ I	Oxygen delivery index
VO ₂ I	Oxygen consumption index
CaO ₂ calc	Calculated arterial oxygen content
CvO ₂ calc	Calculated venous oxygen content

19.4 Ventilation Calculation

19.4.1 Calculation Procedure

- 1. Select Menu > Common Function > Calculation > Ventilation.
- 2. Manually enter the values required on this interface. You can also directly obtain the values of FiO₂, RR, PIP and PEEP if they are available from the monitor by selecting **Get Info**.
- 3. Select **Calculate** to output parameter value.

19.4.2 Input Parameters

Items	English Full Name/Description
FiO ₂	Percentage fraction of inspired oxygen
RR	Respiration rate
PeCO ₂	Partial pressure of mixed expiratory CO ₂
PaCO ₂	Partial pressure of carbon dioxide in the arteries
PaO ₂	Partial pressure of oxygen in the arteries
VT	Tidal volume
RQ	Respiratory quotient
ATMP	Atmospheric pressure
PIP	Peak inspiratory pressure
PEEP	Positive end-expiratory pressure

19.4.3 Output Parameters

Items	English Full Name/Description
PAO ₂	Partial pressure of oxygen in the alveoli
AaDO ₂	Alveolar-arterial oxygen difference
PaO ₂ /FiO ₂	PaO ₂ /FiO ₂
PaO ₂ /PAO ₂	PaO ₂ /PAO ₂
AaDO ₂ /PaO ₂	AaDO ₂ /PaO ₂
MV	Minute volume
VD	Volume of physiological dead space
VD/VT	Physiological dead space in percent of tidal volume
VA	Alveolar volume
Cdyn	Compliance dynamic

19.5 Renal Function Calculation

19.5.1 Calculation Procedure

- 1. Select Menu > Common Function > Calculation > Renal Function.
- 2. Manually enter the values required on this interface.
- 3. Select **Calculate** to output parameter value.

19.5.2 Input Parameters

Items	English Full Name/Description
URK	Urine potassium
URNa	Urinary sodium
Urine	Urine
Posm	Plasm osmolality
Uosm	Urine osmolality
SerNa	Serum sodium
SCr	Serum creatinine
UCr	Urine creatinine
BUN	Blood urea nitrogen
UUN	Urine urea nitrogen
Height	/
Weight	/
Туре	Patient type: Adult, Pediat, Neonat
Gender	Male, Female, N/A.

19.5.3 Output Parameters

Items	English Full Name/Description
URNaEx	Urine sodium excretion
URKEx	Urine potassium excretion
Na/K	Sodium potassium ratio
CNa	Clearance of sodium
CCr	Creatinine clearance rate
CUUN	Urine urea nitrogen clearance rate
FENa	Fractional excretion of sodium
FEUr	Fractional Excretion of Urea
Cosm	Osmolar clearance
CH ₂ O	Free water clearance
U/P osm	Urine to plasma osmolality ratio
BUN/SCr	Blood urea nitrogen creatinine ratio
U/SCr	Urine-serum creatinine ratio

Chapter 20 Recording

A thermal dot matrix recorder is used for the monitor and can support many recording types and output patient information, measurement data, review data waveform and so forth.

1	Recording indicator
2	Paper feeding key: press this key to start or stop feeding recording paper without outputting anything on the paper
3	Paper outlet
4	Recorder door

20.1 Performance of the Recorder

- Waveform record is printed at the rate of 12.5 mm/s, 25 mm/s or 50 mm/s.
- 48mm wide printout paper.
- It can record up to three waveforms.
- User-selectable real-time recording time and waveform.
- Auto recording interval is set by the user, and the waveform is in accordance with the real time recording.

NOTE:

It is suggested that the user should not use the recorder when the low battery displays, or the monitor may be turned off automatically.

20.2 Starting and Stopping Recording

The monitor provides several types of stripe recording. You can start recording following the procedure below:

Recording Type	Description/ Procedure
Continual real-time recording	Select at least one Rec waveform in Recorder Setup (A maximum of three waveforms can be selected), select Continual in R-T Rec Time . Press shortcut key on the screen to start the recording. Press the shortcut again to stop recording.
8-second real-time recording/20-second real-time recording	Select at least one Rec waveform in Recorder Setup (A maximum of three waveforms can be selected), select 8 s or 20 s in R-T Rec Time , set Record Interval as needed, press shortcut key on the screen to start the recording. Press the shortcut again to stop recording or when R-T Rec time ends, the monitor stops recording automatically. The runtime for each wave is 8 seconds or 20 seconds. The record Interval can be set as: Off , 10 min , 20 min , 30 min , 40 min , 50 min , 1 h , 2 h , 3 h , 4 h . The default recording time is 8s.
Trend graph recording	Select Menu > Review > Trend Graph, click Record to start recording.
Trend table recording	Select Menu > Review > Trend Table, click Record to start recording.
NIBP review recording	Select Menu > Review > NIBP Review, click Record to start recording.
Arrhythmia review recording	Select Menu > Review > ARR Review, select one arrhythmia alarm and click Record to start recording.
Alarm review recording	Select Menu > Review > Alarm Review, select one alarm and click Record to start recording.
Drug calculation titration recording	Select Menu > Common Function > Calculation > Drug Dose > Titration, click Record to start recording.
Hemodynamic Calculation result recording	Select Menu > Common Function > Calculation > Hemodynamics, click Record to start recording.
Oxygenation Calculation result recording	Select Menu > Common Function > Calculation > Oxygenation, click Record to start recording.
Ventilation Calculation result recording	Select Menu > Common Function Calculation > Ventilation, click Record to start recording.
Renal Function Calculation result recording	Select Menu > Common Function > Calculation > Renal Function, click Record to start recording.

Recording Type	Description/ Procedure
12-lead analysis recording	Select ECG Setup > 12-L Review, click Record to start recording.
C.O. measurement recording	Select C.O. Option > C.O. Measure , click Record to start recording.
Frozen waveform recording	In the Freeze window, click Record to start recording.

To manually stop recording, click **Record** again in the related windows.

The recorder will stop recording in the following situations:

- The recording task is finished.
- No paper in the recorder.
- Malfunction stops the recorder from running properly.

NOTE:

You can also use the shortcut key on the screen to manually start or stop recording.

20.3 Recorder Operations and Status Messages

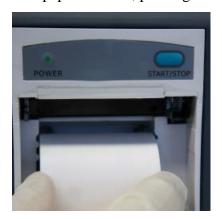
20.3.1 Record Paper Requirement

Only standard thermosensitive record paper can be used: otherwise the recorder may not function, the recording quality may be poor, and the thermosensitive printhead may be damaged.

20.3.2 Proper Operation

- When the recorder is working, the record paper goes out steadily. Do not pull the paper outward with force: otherwise the recorder may be damaged.
- Do not operate the recorder without record paper.

20.3.3 Paper Out


When the **Recorder Out OF Paper** alarm is displayed, the recorder cannot start. Please insert record paper properly.

20.3.4 Replacing Paper

1. Pull outwards the upper arc part of the recorder casing to release the casing, shown in the following figure.

2. Insert a new roll of paper into the paper cassette, printing side facing upwards.

3. Ensure proper position and tidy margin.

4. Pull about 2 cm of the paper out, and close the recorder casing.

NOTE:

Be careful when inserting papers. Avoid damaging the thermo-sensitive print head. Unless when inserting papers or shooting troubles, do not leave the recorder catch open.

20.3.5 Removing Paper Jam

When the recorder functions or sounds improperly, you should open the recorder casing to check

for a paper jam. Remove the paper jam in the following way:

- Cut the record paper from the feeding edge.
- Open the recorder casing.
- Re-insert the paper.

NOTE:

- 1 If the monitor is not configured with the recorder function, it will indicate **Recorder**Setup Needed after is pressed.
- 2 Do not touch the thermo-sensitive print head when performing continuous recording.

Chapter 21 Printing Patient Reports

Patient reports can be printed out by an HP series laser printer connected with the monitor.

NOTE:

Use the printer HP Laser Jet P2055dn which is tested to be compatible with the monitor.

21.1 Printer Settings

You can configure the printer settings on the monitor before printing out patient reports. Click the shortcut key or select **Menu** > **System Setup** > **Printer Setup**, and you can

- Assign a locally networked printer by selecting it from the **Printer** list.
- Search all available printers networked with the monitor by clicking **Search Printer**.
- Enable or disable double side printing by setting **DoubleSide Print** to **On** or **Off**.

The reports will be printed out on A4 paper and with single side by default.

NOTE:

- 1 You need to search all available printers on the local network for the first time you use a networked printer.
- 2 Make sure the IP of the printer and the IP of the monitor share the same network segment.
- 3 Do not click **Search Printer** during printing patient reports, or the printer might stop the current print job.
- When a printer simultaneously received print jobs from several networked monitors, a print job conflict may occur. Check the use status of the monitors and the printers on the same network prior to use and avoid print job conflicts.
- 5 Make sure there is no lack of paper before printing patient reports, or the alarm **Printer Unavailable** will be triggered.

21.2 Starting and Stopping Report Printing

You can print out ten types of patient reports following the procedure below:

Report Type	Procedure
Trend graph report	In the Trend Graph window, click Print to start printing.
Trend table report	In the Trend Table window, click Print to start printing.
Alarm waveform report	In the Alarm Review window, click Print to start printing.
NIBP review report	In the NIBP Review window, click Print to start printing.
Arrhythmia review report	In the ARR Review window, click Print to start printing.
12-lead analysis report	In the Diagnosis Review window, click Print to start printing.

Report Type	Procedure
12-lead analysis waveform report	In the 12-Lead Diagnosis Waveform Review window, click Print to start printing.
Drug calculation titration report	In the Titration window, click Print to start printing.
Oxygenation calculation report	In the Oxygenation window, click Print to start printing.
Ventilation calculation report	In the Ventilation window, click Print to start printing.
Renal function calculation report	In the Renal Function window, click Print to start printing.
C.O. measurement report	In the C.O. Measure window, click Print to start printing.
Hemodynamics report	In the Hemodynamics window, click Print to start printing.

To stop the current print job, click **Stop Printing** in the windows mentioned above.

NOTE:

You can only start one print job at a time. Before starting a new print job, you have to stop the current print job or wait until the current print job is completed.

Chapter 22 Other Functions

22.1 Nurse Call

The monitor provides dedicated nurse call port which is connected to nurse call system through the nurse call cable to perform the nurse call function. You should activate the function following the steps below:

- 1. Select **Menu** > **Maintenance** > **User Maintain**, and input the password **ABC**;
- 2. Select **Other Setups** > **Aux Output**;
- 3. Choose **On** in the **Nurse Call** list.

22.2 Analog Output and Defibrillator Synchronization

The monitor provides analog output signals to accessory equipment. Also, if a defibrillator is connected to the monitor, a defibrillator synchronization pulse can be output. You should activate the function following the steps below:

- 1. Select **Menu** > **Maintenance** > **User Maintain**, and input the password **ABC**;
- 2. Select Other Setups > Aux Output;
- 3. Choose **Analog Output** or **Defibrillation** in the **Aux Output** list.

22.3 Wi-Fi

Wi-Fi modules are optional to be configured in the monitors. And you should configure the settings on the monitor following the steps below before connecting the monitor to a wireless network:

- 1. Select Menu > Maintenance > User Maintain, and input the password ABC.
- 2. In the User Maintain menu, select Network Maintain.
- 3. In the **Network Maintain** menu, select **Wi-Fi** from the **Network Type** list. And click **Config** to open the **Wi-Fi Setup** window. The available networks will be listed in this window.
- 4. Choose a network from the window. You will be prompted to enter the password of that network if a password is required.

If the monitor is successfully connected to the selected network, it will be indicated by the message **Connected**, and the local IP address of the monitor will be displayed in the **Wi-Fi Setup** window. Also, a symbol indicating the networking state will be displayed on the lower portion of the main screen. The meanings of the networking state symbols are explained below:

((1)	Wi-Fi signal intensity: Level 4
(10	Wi-Fi signal intensity: Level 3
•	Wi-Fi signal intensity: Level 2
•	Wi-Fi signal intensity: Level 1

NOTE:

- 1 Be aware that some network-based functions may be limited for monitors on wireless networks in comparison with those on wired networks.
- 2 The obstacle may interfere with data transmission and even cause data loss.
- If the monitor fails to connect to any wireless network or no available wireless network is in the **Wi-Fi Setup** window, switch the **Network Type** from **Wi-Fi** to Wired and then to **Wi-Fi** again. Then retry to connect to a wireless network. If the wireless network still fails to be connected, please try to restart the monitor and connect again.
- 4 Use the wireless device recommended by EDAN, otherwise some exceptional situations such as frequent network disconnection may occur on the monitor.
- 5 The wireless driver is compatible with channels 1-11 only.
- 6 When signal intensity is level 2 or less, signal may be unstable and quality of the signal transmission may be degraded.
- 7 When the monitor is connected to MFM-CMS via the wireless network, the user should set the router to a secure encryption/authentication mode (Recommended option: WPA2-PSK, with a high complexity, non-dictionary password).

22.4 Storing Data in the Storage Device

22.4.1 Data Stored in the Storage Device

Refer to Section A.2.7 Data Management for more information about single patient data volume.

When the single patient data reach the maximum, you can choose to **Keep Storing** or **Stop Storing** by selecting **Menu** > **Common Function** > **Data Store** > **if one patient data full**.

If you choose **Keep Storing**, as soon as the single patient data is full, the earliest data will be replaced by the latest one.

If you choose **Stop Storing**, the monitor will stop data storing and the latest data cannot be stored when the single patient data reach the maximum. For instance, if all the patient data (such as the trend graph, trend table, NIBP measurements, arrhythmia event, alarm event and 12-lead analysis) except waveforms reach the maximum, the monitor will stop storing, while only the waveforms keep storing until they are full.

NOTE:

- 1 The storage time varies according to the patient's parameter data volume. When the single patient data storage reaches 240 hours, the monitor will automatically create a new folder for continuous data store.
- When the storage space is insufficient, the monitor will stop storing data no matter the user selects **Keep Storing** or **Stop Storing**.

22.4.2 Activating/ Deactivating Data Storing

To activate/ deactivate the data storing function, select Menu > Maintenance > User

Maintain > Other Setups, and set Data Store to On or Off.

The monitor will stop storing data in the storage device under the following circumstances:

- No storage devices are selected.
- There is no enough space in the storage device for storing data.
- The removable device is read-only.
- The data storing function is deactivated.
- The monitor is switched off.
- The power supply is off.

22.4.3 Selecting a Storage Device

To configure the storage device, select Menu > Common Function > Data Store > Storage Medium, and choose the storage medium from the pop-up list as desired. Internal Storage Device and Removable Device can be selected.

When you choose **Internal Storage Device** as the storage medium, if configured, the storage device name will automatically become **Internal Storage Device**. You may plug several removable devices into the monitor at the same time, but only one is operative. You can select a removable device as a working one among the plugging devices by selecting **Menu** > **Common Function** > **Data Store** > **Storage Device** and choosing the device name from the list. By default, the first plugged removable device is the working one.

After you configure the appropriate storage device, click exit. If the storage device is successfully starting data storing, the monitor will be indicated by the symbol . If there is no enough space in storage device, or the storage device is read-only/damaged, the symbol will be displayed.

CAUTION

- 1 Not all the removable devices are compatible with the monitor, Use the removable devices recommended by EDAN.
- 2 Do not set the read-only switch on the removable device to on when the removable device is inserted in the monitor.

22.4.4 Reviewing Data Stored in the Storage Device

To review data stored in the storage device, select **Menu** > **Review** > **History Patient**. You can choose to review the storage device as desired from the pop-up list. Choose a patient from the list to review the data including patient information, trend graph, trend table, NIBP measurements, arrhythmia event, alarm event, 12-lead analysis and waveform.

22.4.5 Deleting Data Stored in the Storage Device

To delete data of one patient, choose the patient from the list after selecting **Menu** > **Review** >

History Patient, and then click **Delete data** on the **Review** menu. Further confirmation of deletion is required.

To delete data of all patients, select **Menu** > **Review** > **History Patient** and click **Delete all data** on the **History Patient Review** menu. Further confirmation is required.

22.4.6 Exporting Data Stored in the Internal Storage Device

To export data of one patient from the internal storage device to the removable device, choose the patient from the list after selecting Menu> Review> History Patient, and then click Export Current Data on the Review menu.

To export data of all patients, select Menu> Review> History Patient and click Export all data on the History Patient Review menu.

22.4.7 Formatting the Internal Storage Device

To format the internal storage device, select Menu> Maintenance> User Maintain > Other Setups > Format internal storage device. Further confirmation is required.

NOTE:

- 1 As soon as the internal storage device is formatted, all the data will be cleared.
- 2 You have no need to restart the monitor after formatting is successful. The internal storage device can be identified and loaded automatically.
- 3 If formatting is failed, try again. Restart the monitor and retry the formatting, or contact the service personnel of the manufacturer if formatting is failed repeatedly.

22.4.8 Ejecting a Removable Device

Before unplugging a removable device from the monitor, you need to select **Menu** > **Removable Device** and click **Eject** to uninstall the removable device. In this menu, you can also check the remaining capacity of the storage device.

CAUTION

Do not remove the removable device without ejecting it during data storing, or the removable device might be damaged.

22.5 MEWS*

*Not available in USA.

You can use Modified Early Warning System to get an early warning score based on measurement value or input value of each vital sign. Depending on the score calculated, an action list with appropriate recommendations is displayed.

MEWS function is defaulted to be **Off**. For function selection, please contact service personnel of the manufacturer.

NOTE:

The MEWS score results are for reference only and the score significance must be determined by the physician.

22.5.1 MEWS Score Interface

There are three methods as following to enter into MEWS score system interface:

- 2. In **Menu** > **Common Function**, click **MEWS** to enter into MEWS interface.
- 3. Click MEWS parameter area in main interface to enter into MEWS interface.

22.5.2 MEWS Score Criteria

In MEWS interface, select Criteria to check score criteria as following:

			Val	ue			
	3	2	1	0	1	2	3
HR (bpm)		≤40	41~50	51~100	101~110	111~129	≥ 130
SYS (mmHg)	≤ 70	71~80	81~100	101~199		≥ 200	
RESP (rpm)		< 9		9~14	15~20	21~29	≥ 30
TEMP (°C)		< 35.0		35.0~38.4		≥ 38.5	
Consciousness				A	V	P	U
Age				< 50	50~70		> 70

The relationship between consciousness level and its display result is as below:

Consciousness	Displayed Result
Sober	A
Responsive to Voice	V
Responsive to Pain	P
Unresponsive	U

22.5.3 MEWS Score Method

MEWS includes two methods: MEWS Score Calculator and Auto MEWS Score.

1. MEWS Score Calculator. If you choose MEWS Score Calculator, it is required to manually input HR/PR, TEMP, RR, SYS, Age, Consciousness, and then click Start to Score, the monitor will calculate and then display score result.

NOTE:

If any of above information is not completely input, the monitor will prompt information: Incomplete parameter input, unable to score.

2. Auto MEWS Score. If you choose Auto MEWS, it is required to manually input Age and

Consciousness. After clicking **Start to Score**, the monitor will display MEWS result that will be refreshed with the same interval as NIBP measurements. Clicking **Stop Scoring** could exit MEWS score.

22.5.4 MEWS Score Result

MEWS results include MEWS, time and severity level. The relation for value and severity level is as following:

MEWS	Severity Level	Color	Symbol
MEWS < 5	Non-urgent	Green	3
MEWS = 5	Observing	Yellow	5
$5 < MEWS \le 9$	Warning	Orange	7
MEWS > 9	Critical	Red	10

22.5.5 MEWS Trend Table

Trend table provides the monitored patient's MEWS scores during a period of time; it includes score time, score parameters and value, MEWS score. To check the trend table, click **Trend Table** button in **MEWS** interface.

NOTE:

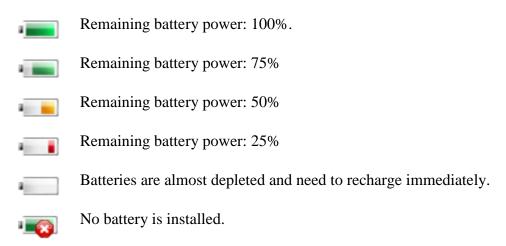
Trend table is cleared after admitting new patients.

Chapter 23 Using Battery

This monitor can run on battery power, which ensures its uninterrupted operation even when AC power supply is interrupted. The battery recharges whenever the monitor is connected to the AC power source. During monitoring, if the AC power is interrupted, the monitor will take power from the internal battery. If the monitor is powered by battery, the monitor will switch off automatically before the battery is completely depleted.

23.1 Battery Safety Information

WARNING


- 1 Before using the rechargeable lithium-ion battery (hereinafter called battery), be sure to read the user manual and safety precautions thoroughly.
- 2 The service life of the battery depends on the service frequency and time. The service life of the battery is about three years if the battery is well maintained and stored. The service life of the battery may shorten if it is used inappropriately.
- 3 Periodic checks on the battery performance are required. Change the battery if necessary.
- 4 Do not connect the positive (+) and negative (-) terminals with metal objects, and do not put the battery together with metal objects, which can result in short circuits.
- 5 Do not unplug the battery when monitoring.
- 6 Do not heat or throw the battery into a fire.
- 7 Do not use, leave the battery close to fire or other places where temperature may be above 60°C.
- 8 Do not immerse, throw, or wet the battery in water/seawater.
- 9 Do not destroy the battery: do not pierce the battery with a sharp object such as a needle; do not hit with a hammer, step on or throw or drop to cause strong shock; do not disassemble or modify the battery.
- 10 The recommended battery can only be used for this monitor. Do not solder the leading wire and the battery terminal directly.
- 11 If liquid leaking from the battery gets into your eyes, do not rub your eyes. Wash them well with clean water and go to see a doctor immediately. If liquid leaks of the battery splash onto your skin or clothes, wash well with fresh water immediately.
- 12 Keep away from fire immediately when leakage or foul odor is detected.
- 13 Stop using the battery if abnormal heat, odor, discoloration, deformation or abnormal condition is detected during use, charge, or storage. Keep it away from the monitor.
- 14 Do not use a battery with serious scratch or deformation.
- 15 When the monitor is running on battery power, do not replace the battery during monitoring patients; or the monitor will be powered off, which may result in patient injury.
- 16 Do not place battery in the monitor with the (+) and (-) in the wrong way.
- 17 Use the battery with similar performance, which can extend the service life of the battery.

23.2 Battery Power Indicator

The indicator labeled Battery on the front panel of the monitor illuminates in green when the monitor is battery powered and illuminates in yellow when battery is being charged. The indicator is not illuminated when the monitor is not powered or fully powered, or when AC power is applied.

23.3 Battery Status on the Main Screen

Battery status symbols show the status of each battery detected and the combined battery power remaining.

23.4 Checking Battery Performance

The performance of rechargeable batteries may deteriorate over time. Battery maintenance as recommended here can help to slow down this process.

- 1. Disconnect the patient from the monitor and stop all monitoring and measurement.
- 2. Switch the monitor power on and charge the battery for more than 6 hours continuously.
- 3. Disconnect monitor from mains power and let the monitor run until there is no battery power left and the monitor shuts off.
- 4. The running time of the battery reflects the battery performance.

If the running time is obviously less than the specified time in the specification, please change the battery or contact the service personnel.

23.5 Recycling the Battery

When the battery no longer holds a charge, it should be replaced. Remove the old battery from the monitor and recycle it properly.

WARNING

Do not disassemble batteries, put them into fire or cause them to short circuit. They may ignite, explode or leak, causing personal injury.

23.6 Maintaining the Battery

Batteries should be conditioned regularly to maintain their useful life.

Remove the batteries from the monitor if they are not used for a longer period of time. And recharge the batteries at a minimum of every 6 months when they are stored.

Discharge the battery completely once every month.

Chapter 24 Care and Cleaning

Use only the EDAN-approved substances and methods listed in this chapter to clean or disinfect your equipment. Warranty does not cover damage caused by using unapproved substances or methods.

EDAN Instruments has validated the cleaning and disinfection instructions included in this User Manual. It is the responsibility of the healthcare professional to ensure that the instructions are followed so as to ensure adequate cleaning and disinfection.

24.1 General Points

Keep your monitor, cables and accessories free of dust and dirt. To prevent the device from damage, please follow the procedure:

- Use only recommended cleaning substances and disinfectants listed in this manual. Others
 may cause damage (not covered by warranty), reduce product lifetime or cause safety
 hazards.
- Always dilute according to the manufacturer's instructions.
- Unless otherwise specified, do not immerse any part of the equipment or any accessories in liquid.
- Do not pour liquid onto the system.
- Do not allow liquid to enter the case.
- Never use abrasive material (such as steel wool or silver polish).
- Inspect the monitor and reusable accessories after they are cleaned and disinfected.

CAUTION

If you spill liquid on the equipment, battery, or accessories, or they are accidentally immersed in liquid, contact your service personnel or EDAN service engineer.

24.2 Cleaning

If the device or accessory has been in contact with the patient, then cleaning and disinfection is required after every use. If there has been no patient contact and there is no visible contamination then daily cleaning and disinfection is appropriate.

The validated cleaning agents for cleaning the monitor and reusable accessories are:

- Mild near neutral detergent
- Ethanol (75%)
- Isopropanol (70%)

Cleaning agents should be applied and removed using a clean, soft, non-abrasive cloth or paper towel.

24.2.1 Cleaning the Monitor

WARNING

Before cleaning the monitor, make sure that the monitor is switched off and disconnected from the power line.

To surface-clean the monitor, follow these steps:

- 1. Switch off the monitor and disconnect it from the power line.
- 2. Wipe the entire exterior surface, including the screen, of the equipment using a soft cloth dampened with the cleaning solution thoroughly until no visible contaminants remain.
- 3. After cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 4. Dry the monitor in a ventilated and cool place.

24.2.2 Cleaning the Reusable Accessories

24.2.2.1 Cleaning the ECG Cable Assembly

- 1. Wipe the cable assembly with a soft cloth dampened with the cleaning solution until no visible contaminants remain.
- 2. After cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 3. Wipe off residual moisture with a dry cloth.
- 4. Leave the cable assembly to air dry.

24.2.2.2 Cleaning the Blood Pressure Cuff

Cleaning the Cuff:

- 1. Take out the air bladder before cleaning.
- 2. Hand wash the cuff with the cleaning solution; clean the air bladder with a soft cloth dampened with the cleaning solution until no visible contaminants remain.
- 3. Rinse the cuff and after cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 4. Wipe off residual moisture with a dry cloth.
- 5. Air dry the cuff thoroughly after cleaning.

Replacing the Air Bladder:

After cleaning, replace the air bladder into the cuff following the steps below:

1. Roll the bladder lengthwise and insert it into the cuff from the large opening at one end of the cuff.

- 2. Thread the hose from within the cuff and out through the small hole at the top of the cuff.
- 3. Adjust the bladder until it is in position.

24.2.2.3 Cleaning the SpO₂ Sensor

- 1. Wipe the surfaces of the sensor and cable using a soft cloth dampened with the cleaning solution until no visible contaminants remain.
- 2. Wipe the patient contact area of the sensor with the cotton swab dampened with the cleaning solution until no visible contaminants remain.
- 3. After cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 4. Wipe off residual moisture with a dry cloth.
- 5. Leave the sensor to air dry.

24.2.2.4 Cleaning the IBP/C.O. Cables

- 1. Wipe the cables with a soft cloth dampened with the cleaning solution until no visible contaminants remain.
- 2. After cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 3. Wipe off residual moisture with a dry cloth.
- 4. Leave the cables to air dry.

24.2.2.5 Cleaning the TEMP Sensor Probe

- 1. Wipe the patient contact area with a soft cloth dampened with the cleaning solution until no visible contaminants remain.
- 2. After cleaning, wipe off the cleaning solution with a fresh cloth or towel dampened with tap water until no visible cleaning agent remains.
- 3. Wipe off residual moisture with a dry cloth.
- 4. Leave the sensor/probe to air dry.

24.3 Disinfection

For devices or accessories that have been in contact mucosal surface, High Level disinfection must occur, for all other accessories, low level disinfection is appropriate. Clean the monitor and reusable accessories before they are disinfected. The validated disinfectants for cleaning the monitor and reusable accessories are:

- Ethanol (75%)
- Isopropanol (70%)
- Cidex OPA (High level disinfection of intracavitary temperature probe only)

If Ethanol or Isopropanol is used for both cleaning and disinfecting, then a new cloth is required to be used for the disinfection step.

WARNING

The monitor and reusable accessories shall be disinfected to avoid patient cross infection.

CAUTION

- Do not use any disinfectant containing additional active ingredients other than those listed, such as disinfectant didecyl dimethyl ammonium bromide which contains quanternary ammonium salt.
- 2 Although the monitor chemically resistant to most common hospital cleaners, disinfectants and non-caustic detergents, different cleaners or disinfectants are not recommended and may stain the monitor, such as disinfectant didecyl dimethyl ammonium bromide which contains quanternary ammonium salt.

24.3.1 Disinfecting the Monitor

WARNING

Before disinfecting the monitor, make sure that the monitor is switched off and disconnected from the power line.

To disinfect the monitor, follow these steps:

- 1. Switch off the monitor and disconnect it from the power line.
- 2. Wipe the display screen using a soft, clean cloth dampened with the disinfectant solution.
- 3. Wipe the exterior surface of the equipment using a soft cloth dampened with the disinfectant solution.
- 4. Wipe off the disinfectant solution with a dry cloth after disinfection if necessary.
- 5. Dry the monitor for at least 30 minutes in a ventilated and cool place.

24.3.2 Disinfecting the Reusable Accessories

24.3.2.1 Disinfecting the ECG Cable Assembly

- 1. Wipe the cable assembly with a soft cloth dampened with the disinfectant solution.
- 2. Wipe off the disinfectant solution with a dry cloth after disinfection.
- 3. Leave the cable assembly to air dry for at least 30 minutes.

24.3.2.2 Disinfecting the Blood Pressure Cuff

Disinfecting the Cuff:

1. Take out the air bladder before disinfection.

- 2. Wipe the cuff and the air bladder with a soft cloth dampened with the disinfectant solution.
- 3. Leave the cuff and air bladder to air dry for at least 30 minutes.

Replacing the Air Bladder:

After disinfection, replace the air bladder into the cuff. Refer to Section 24.2.2.2 for more information.

NOTE:

Prolonged use of disinfectant may cause discoloration of the cuff.

24.3.2.3 Disinfecting the SpO₂ Sensor

- 1. Wipe the surfaces of the sensor and cable using a soft cloth dampened with the disinfection solution.
- 2. Wipe the patient contact area of the sensor with the cotton swab dampened with the disinfection solution.
- 3. Wipe off the disinfection solution with a dry cloth after disinfection.
- 4. Leave the sensor to air dry for at least 30 minutes.

24.3.2.4 Disinfecting the IBP/C.O. Cables

- 1. Wipe the cables with a soft cloth dampened with the disinfectant solution.
- 2. Wipe off the disinfectant solution with a dry cloth after disinfection.
- 3. Leave the cables to air dry for at least 30 minutes.

24.3.2.5 Disinfecting the TEMP Sensor

The intracavitary TEMP sensors should be reprocessed by high-level disinfection before and after use on each new patient. Cidex OPA is the validated agent for high level disinfection. Refer to the instructions of the disinfectant for the methods of disinfection. High level disinfection has been validated with a 12 minute soak. Rinse and dry according to the labeled instructions of Cidex OPA. Do not dampen the sensor connector.

For the skin TEMP sensors, disinfect them as follows using ethanol or isopropanol only:

- 1. Wipe the patient contact area with a soft cloth dampened with the disinfectant solution (ethanol or isopropanol).
- 2. Wipe off the disinfectant solution with a dry cloth after disinfection.
- 3. Leave the sensor to air dry.

24.4 Cleaning and Disinfecting Other Accessories

For cleaning and disinfecting other accessories, refer to the instructions delivered with the accessories. If the accessories are not accompanied by instructions, refer to this manual for the methods of cleaning and disinfecting the monitor.

Chapter 25 Maintenance

WARNING

- 1 Failure on the part of the responsible individual hospital or institution employing the use of this equipment to implement a satisfactory maintenance schedule may cause undue equipment failure and possible health hazards.
- 2 If you discover a problem with any of the equipment, contact your service personnel, or your authorized supplier.

25.1 Inspecting

The overall check of the monitor, including the safety check, should be performed only by qualified personnel every 24 months, and each time after fix up.

The following items should be checked:

- If the environment condition and power supply meet requirement.
- If the power supply cord has damage and insulativity meets requirement.
- If the device and accessories have damage.
- Specified accessories.
- If the alarm system can work properly.
- If the recorder can work properly and the paper meets the requirement.
- Battery performance
- If all monitoring functions are in good conditions.
- If the grounding resistance and leakage current meet requirement.

If any damage or abnormality is found, please don't use the monitor and contact local Customer Service Center.

25.2 Maintenance Task and Test Schedule

Maintenance shall be carried out at least once every two years, or as specified by local regulations. The following tasks are for EDAN-qualified service professionals only. Contact an EDAN-qualified service provider if your monitor needs a safety or performance test. Clean and disinfect equipment to decontaminate it before testing or maintaining it.

Maintenance and Test Schedule	Frequency
Safety checks. Selected tests on the basis of IEC60601-1	At least once every two years, or as needed, after any repairs where the power supply is removed or replaced, or if the monitor has been dropped.
Check all monitoring functions and measuring functions	At least once every two years, or as needed.

Chapter 26 Warranty and Service

26.1 Warranty

EDAN warrants that EDAN's products meet the labeled specifications of the products and will be free from defects in materials and workmanship that occur within warranty period.

The warranty is void in cases of:

- a) damage caused by mishandling during shipping.
- b) subsequent damage caused by improper use or maintenance.
- c) damage caused by alteration or repair by anyone not authorized by EDAN.
- d) damage caused by accidents.
- e) replacement or removal of serial number label and manufacture label.

If a product covered by this warranty is determined to be defective because of defective materials, components, or workmanship, and the warranty claim is made within the warranty period, EDAN will, at its discretion, repair or replace the defective part(s) free of charge. EDAN will not provide a substitute product for use when the defective product is being repaired.

26.2 Contact Information

If you have any question about maintenance, technical specifications or malfunctions of devices, contact your local distributor.

Alternatively, you can send an email to EDAN service department at: support@edan.com.cn.

Chapter 27 Accessories

You can order accessories from EDAN supplies at www.edan.com.cn or consult your local EDAN representative for details.

WARNING

- 1 Never reuse disposable transducers, sensors, accessories and so forth that are intended for single use, or single patient use only. Reuse may compromise device functionality and system performance and cause a potential hazard.
- 2 Use only EDAN-approved accessories. Using non-EDAN-approved accessories may compromise device functionality and system performance and cause a potential hazard. It is not recommended to use accessories supplied by EDAN with patient monitors by other manufacturers.
- 3 IBP and C.O. sterilized accessories are already sterilized, refer to the package labeling for detailed method. Do not use a sterilized accessory if its packaging is damaged.

NOTE:

Transducers and sensors have a limited shelf life. Refer to the package labeling.

The following cables may not all be available in all countries. Please check availability with your local EDAN supplier.

27.1 ECG Accessories

Part Number	Accessories
01.57.471380	3-lead, 12-pin, Defib-proof, AHA, Snap
01.57.471388	3-lead, 12-pin, ESU-proof, AHA, Snap
01.57.471378	3-lead, 12-pin, Defib-proof, AHA, Clip
01.57.471386	3-lead, 12-pin, ESU-proof, AHA, Clip
01.57.471379	3-lead, 12-pin, Defib-proof, IEC, Snap
01.57.471387	3-lead, 12-pin, ESU-proof, IEC, Snap
01.57.471377	3-lead, 12-pin, Defib-proof, IEC, Clip
01.57.471385	3-lead, 12-pin, ESU-proof, IEC, Clip
01.57.471226	5-lead, 12-pin, ESU-proof, Adult/pediatric
01.57.471227	ECG trunk cable, 5-lead, 12-pin, ESU-proof, AHA/IEC, 5.0 m, reusable

Part Number	Accessories
01.57.471228	5-lead, 12-pin, Defib-proof, Adult/pediatric
01.57.471229	5-lead, 12-pin, Defib-proof, Adult/pediatric, Extended
01.13.036620	5-lead, Clip, AHA, Adult/pediatric, Extended
01.13.036621	5-lead, Clip, AHA, Adult/pediatric
01.13.036622	5-lead, Snap, AHA, Adult/pediatric, Extended
01.13.036623	5-lead, Snap, AHA, Adult/pediatric
01.13.036624	5-lead, Clip, IEC, Adult/pediatric, Extended
01.13.036625	5-lead, Clip, IEC, Adult/pediatric
01.13.036626	5-lead, Snap, IEC, Adult/pediatric, Extended
01.13.036627	5-lead, Snap, IEC, Adult/pediatric
01.57.471979	6-lead, 12-pin, Defib-proof, Adult/pediatric
01.57.471980	6-lead, Clip, AHA, Adult/pediatric
01.57.471981	6-lead, Snap, AHA, Adult/pediatric
01.57.471982	6-lead, Clip, IEC, Adult/pediatric
01.57.471983	6-lead, Snap, IEC, Adult/pediatric
01.57.040203	12-lead, Snap, IEC, Adult/pediatric
01.57.471163	12-lead, Clip, IEC, Adult/pediatric
01.57.109101	12-lead, Snap, AHA, Adult/pediatric
01.57.471169	12-lead, Clip, AHA, Adult/pediatric
01.57.471072	12-lead, 12-pin, Defib-proof, AHA, Adult/pediatric
01.57.471168	12-lead, 12-pin, Defib-proof, IEC, Adult/pediatric
01.57.471461	3-lead, Clip, IEC, 1.0 m, Reusable
01.57.471462	ECG limb wires, 3-lead, snap, IEC, 1.0 m, reusable
01.57.471463	3-lead, Clip, AHA, 1.0 m, Reusable
01.57.471464	ECG limb wires, 3-lead, snap, AHA, 1.0 m, reusable

Part Number	Accessories
01.57.471465	5-lead, 12-pin, Defib-proof, Clip, IEC, 3.4 m, Reusable
01.57.471466	5-lead, 12-pin, Defib-proof, Clip, AHA, 3.4 m, Reusable
01.57.471467	5-lead, 12-pin, Defib-proof, Snap, IEC, 3.4 m, Reusable
01.57.471468	5-lead, 12-pin, Defib-proof, Snap, AHA, 3.4 m, Reusable
01.57.471473	5-lead, 12-pin, ESU-proof, Clip, IEC, 3.4 m, Reusable
01.57.471474	5-Lead, 12-pin, ESU-proof, Clip, AHA, 3.4 m, Reusable
01.57.471475	5-Lead, 12-pin, ESU-proof, Snap, IEC, 3.4 m, Reusable
01.57.471476	5-lead, 12-pin, ESU-proof, Snap, AHA, 3.4 m, Reusable
01.57.471481	3-lead, 12-pin, ESU-proof, AHA/IEC, 2.7 m, Reusable
01.57.471482	3-lead, 12-pin, ESU-proof, AHA/IEC, 5.0 m, Reusable
01.57.471483	3-lead, 12-pin, Defib-proof, AHA/IEC, 2.7 m, Reusable
01.57.471484	3-lead, 12-pin, Defib-proof, AHA/IEC, 5.0 m, Reusable
01.57.471196	3-lead, Snap, AHA, Neonate
01.57.471198	3-lead, Clip, AHA, Neonate
01.57.471195	3-lead, Snap, IEC, Neonate
01.57.471197	3-lead, Clip, IEC, Neonate
01.57.471194	3-lead, 12-pin, Defib-proof, Neonate
01.57.471861	Disposable ECG Electrodes
01.54.471858	Disposable ECG Electrodes
01.57.471862	Disposable ECG Electrodes
01.57.471859	Disposable ECG Electrodes
01.57.471897	Disposable ECG Electrodes
01.57.471898	Disposable ECG Electrodes
01.57.472011	Disposable ECG Electrodes
01.57.472012	Disposable ECG Electrodes
01.57.472013	Disposable ECG Electrodes

Part Number	Accessories
01.57.472014	Disposable ECG Electrodes
01.57.471276	Disposable ECG Electrodes
01.57.471056	Disposable ECG Electrodes
01.57.471057	Disposable ECG Electrodes
01.57.471060	Disposable ECG Electrodes

27.2 SpO₂ Accessories

Part Number	Accessories
02.57.225029	7-pin SH1 Adult Reusable SpO ₂ Sensor /adult, 2.5 m
02.01.210120	SH1 Adult Reusable SpO ₂ Sensor (DB9)
02.01.210673	SH3 Neonate Warp SpO ₂ Sensor
02.01.210122	SH4 Adult Silicone Soft-tip SpO ₂ Sensor
02.01.210121	SH5 pediatric Silicone Soft-tip SpO ₂ Sensor
02.57.225000	SpO ₂ Sensor, Ear Clip, Adult/Pediatric, 1m, reusable
01.57.471068	SpO ₂ Extension cable, 2 m
01.57.471789	7-pin SpO ₂ adapter cable/SpO ₂ Extension cable, 4.0 m
01.57.471235	SHD-A SpO ₂ Sensor, adult, disposable
01.57.471236	SHD-P SpO ₂ Sensor, pediatric, disposable
01.57.471237	SHD-I SpO ₂ Sensor, Infant, disposable
01.57.471238	SHD-N SpO ₂ Sensor, Neonate, disposable

27.3 NIBP Accessories

Part Number	Accessories
01.57.471326	NIBP Cuff, E5, Infant, 10-15 cm, reusable
01.57.471327	NIBP Cuff, E6, Small child, 13-17 cm, reusable
01.57.471328	NIBP Cuff, E7, Child, 16-21.5 cm, reusable
01.57.471329	NIBP Cuff, E8, Small adult, 20.5-28 cm, reusable

Part Number	Accessories
01.57.471330	NIBP Cuff, E9, Adult, 27-35 cm, reusable
01.57.471331	NIBP Cuff, E10, Large adult, 34-43 cm, reusable
01.57.471396	NIBP Cuff, E11, Thigh, 42-54 cm, reusable
01.57.471323	NIBP Cuff, Neonate, 10 cm-15 cm, reusable
01.57.471324	NIBP Cuff, Neonate, 6 cm-11 cm, reusable
01.57.471157	NIBP Cuff, neonatal #1, 3-6 cm, disposable
01.57.471158	NIBP Cuff, neonatal #2, 4-8 cm, disposable
01.57.471159	NIBP Cuff, neonatal #3, 6-11 cm, disposable
01.57.471160	NIBP Cuff, neonatal #4, 7-13 cm, disposable
01.57.471161	NIBP Cuff, neonatal #5, 8-15 cm, disposable
01.59.473007	NIBP Hose/3.0 m,Φ7.2 mm*Φ3.6 mm, TPU 85A, gray

27.4 TEMP Accessories

Part Number	Accessories	
01.15.040225	Temperature Probe/Skin, adult, 3 m, reusable	
01.15.040226	Temperature Probe/Skin, adult, 3 m, reusable	
01.15.040227	Temperature Probe/rectal/oral, adult, 3 m, reusable	
01.15.040228	Temperature Probe, rectal/oral, adult, 3 m, reusable	
01.15.040253	Temperature Probe/Skin, neonatal/Infant, 3 m, reusable	
01.15.040254	Temperature Probe/rectal/oral, neonatal/Infant, 3 m, reusable	
01.15.040255	Temperature Probe/Skin, neonatal/Infant, 3 m, reusable	
01.15.040256	Temperature Probe/rectal/oral, neonatal/Infant, 3 m, reusable	

27.5 IBP Accessories

Part Number	Accessories
01.57.471070	IBP Pressure transducer interface cable/Interface model BD
01.57.471172	IBP Pressure transducer interface cable/EDWARD type interface

Part Number	Accessories	
01.57.471173	IBP Pressure transducer interface cable/Hospira type interface	
01.57.471166	IBP Pressure transducer interface cable/the UTAH type interface	
01.57.471836	IBP Pressure transducer interface cable/12 pin,B.Braun type interface	
01.57.471971	12 pin, dual channel, IBP cable (BD)	
01.57.471972	12 pin, dual channel, IBP cable (EDWARD)	
01.57.471973	12 pin, dual channel, IBP cable (HOSPIRA)	
01.57.471974	12 pin, dual channel, IBP cable (UTAH)	
01.57.471975	12 pin, dual channel, IBP cable (B.Braun)	
01.57.40121	IDTX Enhanced SPU Transducer/BD DT-4812	
01.57.471664	Disposable Pressure Transducer	
01.57.471665	Disposable Pressure Transducer	
01.57.471666	Disposable Pressure Transducer	
01.57.471880	Reusable Pressure Transducer	
01.57.471881	Disposable Dome	

27.6 CO₂ Accessories

Part Number	Accessories	
01.57.471034	L-type tee	
02.01.210520	Dewatering Cup(Single Patient Use, Adult/Pediatric 10 ml)	
01.57.471275	CO ₂ Sampling Line with Male Luer Lock, 2.0 m	
01.57.471282	All Purpose Sampling Cannula without filter (Non Sterile). Size: Adult	
01.57.471283	All Purpose Sampling Cannula without filter (Non Sterile). Size: Infant	
01.57.471284	All Purpose Sampling Cannula without filter (Non Sterile). Size: Neonate	
01.57.471285	Duo Flow O ₂ +CO ₂ Sampling Cannula (Non Sterile). Size: Adult	
01.57.471286	86 Duo Flow O ₂ +CO ₂ Sampling Cannula (Non Sterile). Size: Child	
01.57.471287	Capnomask O ₂ +CO ₂ Sampling Cannula (Non Sterile). Size: Adult	
01.57.471288	Capnomask O ₂ +CO ₂ Sampling Cannula (Non Sterile). Size: Child	

27.7 C.O. Accessories*

*Only applicable to X12.

Part Number	Accessories
01.57.471071	Cardiac output cable
01.13.40119	In-line Injection temperature probe (BD 684056-SP4042)
01.57.40120	In-line Injection temperature probe housing (BD 680006-SP5045)
01.57.40121	IDTX Enhanced SPU Transducer/BD DT-4812
01.57.100175	Control Syringe (Medex MX387)

NOTE:

The Thermodilution Catheter is required when measuring C.O.. Swan-Ganz catheter (Type 131HF7 and 741HF7), manufactured by Edwards Lifesciences Corporation, has been validated to be compatible with the monitor. Refer to Edwards for more details.

27.8 Other Accessories

Part Number	Accessories	
01.13.036638	Power cable, length 1.8 m, VDE	
01.13.037122	Power cable, length 1.8 m, American standard, medical grade	
01.57.078035	Recorder paper	
01.23.068023	Linear Barcode Scanner	
02.04.241690	Patient monitor mounting arm assembly kit (X8/X10, big basket)	
02.04.101976	Rolling Stand Basket (in the bottom)	
02.04.241699	Patient monitor mounting arm assembly kit (M3/iM50)	
83.60.261069	MT-206 Trolley (Metal wheels, X8/X10)	
83.60.261116	MT-206 Trolley (Plastic wheels, X8/X10)	
01.13.114214	Ground Cable	
01.18.052245	Netac USB flash disk (U208, 4G, USB2.0)	
02.01.210633	Unicode recorder, Serial/parallel port	
01.17.052452	SD Memory Card (8GB, Class4)	
01.21.064380	Rechargeable Lithium-Ion Battery, 2550 mAh, 10.8 V	

Part Number	Accessories	
01.21.064381	Rechargeable Lithium-Ion Battery, 5100 mAh, 10.8 V	
02.01.211226	Patient monitor mounting arm assembly kit	
02.01.211225	Patient monitor mounting arm assembly kit	
02.04.241697	Patient monitor mounting arm assembly kit (iM60/iM70)	
02.04.241688	Patient monitor mounting arm assembly kit (X12, with basket)	
02.01.211227	Trolley adapter assembly kit (X12)	
02.04.101984	M3 Trolley Adaptor Kit	
83.60.261083	MT-206 Trolley (Metal wheels, X12)	
83.60.261118	MT-206 Trolley (plastic wheels, X12)	

NOTE:

The part name may vary depending on context, but the part number is constant.

A Product Specification

NOTE:

The performance of the equipment with $\stackrel{\wedge}{\propto}$ mark is determined to be essential performance.

A.1 Classification

Anti-electroshock type	Class I equipment and internal powered equipment
Anti-electroshock degree	CF
Ingress Protection	IPX1
Disinfection/sterilization method	Refer to Chapter Care and Cleaning for details.
Working system	Continuous operation equipment
Compliant with Standards	IEC 60601-1: 2005+A1 :2012; IEC 60601-1-2: 2014;
	EN 60601-1: 2006+A1 :2013; EN 60601-1-2: 2015;
	IEC 60601-2-49: 2011

A.2 Physical Specifications

A.2.1 Size and Weight

Product	Size	,	Weight
X8	$236\pm2 \text{ mm (W)} \times 236\pm2 \text{ mm (H)} \times 147\pm2 \text{ mm (D)}$	< 2.4 kg	Standard configurations,
X10	$261\pm2 \text{ mm (W)} \times 246\pm2 \text{mm (H)} \times 146\pm2 \text{ mm (D)}$	< 2.8 kg	no battery or
X12	$306\pm2 \text{ mm (W)} \times 309\pm2 \text{ mm (H)} \times 151\pm2 \text{ mm (D)}$	< 3.5 kg	accessories

A.2.2 Function Configuration

Product	Standard Configuration	Optional Configuration	
X8	ECG (3 electrodes), ECG (5 electrodes), RESP, TEMP (T1), SpO ₂ , NIBP	ECG (6 electrodes), ECG (10 electrodes), CO ₂ , Wi-Fi	
X10	ECG (3 electrodes), ECG (5 electrodes), RESP, TEMP (T1, T2), SpO ₂ , NIBP	ECG (6 electrodes), ECG (10 electrodes), IBP, CO ₂ , Wi-Fi	
X12	ECG (3 electrodes), ECG (5 electrodes), RESP, TEMP (T1, T2), SpO ₂ , NIBP	ECG (6 electrodes), ECG (10 electrodes), IBP, CO ₂ , C.O., Wi-Fi	

A.2.3 Environment Specification

The monitor may not meet the performance specifications given here if stored or used outside the specified temperature and humidity ranges.

When the monitor and related products have differing environmental specifications, the effective range for the combined products is that range which is common to the specifications for all products.

Temperature			
Working	+0 °C to +40 °C(32 °F~104 °F)		
	When the battery is charged: $+0$ °C to $+35$ °C(32 °F ~95 °F)		
Transport and Storage	-20 °C to +55 °C(-4 °F~131 °F)		
Humidity	Humidity		
Working	15%RH ~ 95%RH (non-condensing)		
Transport and Storage	15%RH ~ 95%RH (non-condensing)		
Altitude			
Working	86 kPa ~ 106 kPa		
Transport and Storage	70 kPa ~ 106 kPa		
Power Supply	100 V-240 V~,50 Hz/60 Hz		
	X8	Current=1.0 A-0.5 A;	
	X10/X12	Current=1.4 A-0.7 A.	

A.2.4 Display

Product	Display	Messages
X8	Display screen: 8-inch color TFT, supporting touch screen Resolution: 800×600 A maximum of 13 waveforms	One power LED Two alarm LED One charge LED
X10	Display screen: 10.1-inch color TFT, supporting touch screen Resolution: 800×480 A maximum of 13 waveforms	
X12	Display screen: 12.1-inch color TFT, supporting touch screen Resolution: 800×600 A maximum of 13 waveforms	

A.2.5 Battery Specification

Operating Time	2550 mAh (standard)	≥ 4 h
	5100 mAh (optional)	≥ 8 h
Condition	At 20 °C ~30 °C, with (a) new fully charged battery/batteries, continuous SpO ₂ measurement and NIBP automatic measurement mode at interval of 15 minutes, brightness set to "1".	
Charge Time	2550 mAh (standard) \leq 3.5 h, 90% charge	
	5100 mAh (optional) \leq 6.5 h, 90% charge	
Condition	Environment temperature: 20 °C ~30 °C.	

A.2.6 Recorder

Record Width	48 mm
Paper Speed	12.5 mm/s, 25 mm/s, 50 mm/s
Trace	3
Recording types	Continuous real-time recording;
	8 seconds real-time recording
	20 seconds real-time recording
	Time recording
	Alarm recording
	Trend graph recording
	Trend table recording
	NIBP review recording
	Arrhythmia review recording
	Alarm review recording
	Drug calculation titration recording
	Hemodynamic Calculation result recording
	12-lead analysis recording
	C.O. measurement recording

A.2.7 Data Management

Data Review

Trend graph/trend table review	3 hrs, at 1 Second Resolution by default
	120 hrs, at 1 min. Resolution by default
Alarm/Monitoring Event data	Up to 200 sets

NIBP Measurement Review	1200 sets
Arrhythmia events	Up to 200 sets
12-lead analysis Review	Up to 50 sets

Refer to Chapter 18 Review for more information about data review.

Data Storage

A single piece of patient data maximally contains the following information:

Trend graph and trend table	240 hours, resolution: 1 min
NIBP measurement review	1200 sets
Alarm review	200 sets
Arrhythmia event	200 sets
12-lead analysis review	50 sets
Full disclosure Waveforms	3- electrode/5- electrode/6- electrode:48 hours 10- electrode: 35 hours

The following storage capacity for 1G extended space is for reference:

Continuous parameter data	720 hours, resolution: 1 min
NIBP data	At least 68000 sets
Physiological alarm event	At least 4500 sets
Arrhythmia event	At least 4500 sets
Full disclosure waveforms	720 hours

Refer to Section 22.4 *Storing Data in the Storage Device* for more information about storing data in the storage medium.

A.3 Wi-Fi (Optional)

IEEE	802.11b/g/n
Frequency Band	2.4 GHz ISM band
Modulation	OFDM with BPSK, QPSK, 16-QAM, and 64-QAM
	802.11b with CCK and DSSS
Typical Transmit Power (±2 dBm)	17 dBm for 802.11b DSSS
	17 dBm for 802.11b CCK
	15 dBm for 802.11g/n OFDM

A.4 ECG

Complies with IEC 60601-2-25: 2011, IEC 60601-2-27: 2011.

Lead Mode	3-Electrode: I, II, III
	5-Electrode: I, II, III, aVR, aVL, aVF, V
	6-Electrode: I, II, III, aVR, aVL, aVF, and leads responding to Va Vb.
	10-Electrode: I, II, III, aVR, aVL, aVF, V1, V2, V3, V4, V5, V6
Electrode Standard	AHA, IEC
☆Display Sensitivity	1.25 mm/mV (×0.125), 2.5 mm/mV (×0.25), 5 mm/mV (×0.5),
(Gain Selection)	10 mm/mV (×1), 20 mm/mV (×2), 40 mm/mV (×4), AUTO gain
☆Sweep	6.25 mm/s, 12.5 mm/s, 25 mm/s, 50 mm/s
Bandwidth (-3dB)	Diagnosis: 0.05 Hz to 150 Hz
	Diagnosis 1: 0.05 Hz to 40 Hz
	Monitor: 0.5 Hz to 40 Hz
	Surgery: 1 Hz to 20 Hz
	Enhanced: 2 Hz ~18 Hz
	Customized: High-pass Filter and Low-pass Filter (Refer to
	8.3.2)
☆CMRR (Common Mode	Diagnosis: > 95 dB
Rejection Ratio)	Monitor: > 105 dB
	Surgery: > 105 dB
	Enhanced: > 105 dB
	Diagnosis 1: > 105 dB (when Notch is turned on)
	Customized: > 105 dB (Low-pass Filter < 40 Hz)
	> 95 dB (Low-pass Filter > 40 Hz)
Hum Filter	In diagnosis, Diagnosis 1, monitor, surgery, enhanced modes: 50
	Hz/60 Hz (Hum filter can be turned on or off manually)
☆ Differential Input	$> 5 \text{ M}\Omega$
Impedance	
☆Input Signal Range	±10 mV PP
A mput bighai Kange	
☆ Accuracy of Signal	An error of $\leq \pm 20$ % of the nominal value of the output or ± 100
Reproduction	μ V, whichever is greater.
	The total error and frequency response comply with IEC
	60601-2-27: 2011, Sect. 201.12.1.101.1.
☆ Electrode Offset	±800 mV
Potential Tolerance	

Auxiliary Current (Leads		
off detection)	Reference electrode: < 900 nA	
☆ Recovery Time After	< 5 s (measured without electrodes as IEC60601-2-27:2011, Sect.	
Defibrillation	201.8.5.5.1 requires.)	
I 1 C (D)	• ′	
Leakage Current of Patient	$< 10 \mu A$	
Scale Signal	1 mV PP, accuracy is ±5%	
☆System Noise	< 30 μVPP	
	≤ 5% of the input signal	
	Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.5.	
☆Frequency and Impulse	Frequency response:	
Response	Input a 5 Hz, 1 mV sine wave signal, and the output signal	
_	amplitude remains within the range of 71 % to 110 % at 0.67 Hz	
	and 40 Hz.	
	Input a 1 Hz, 1.5 mV 200 ms triangular wave input signal, and	
	the output shall be within 11.25 mm~15 mm.	
	Impulse response:	
	Displacement value: ≤ 0.1 mV	
	Slope: $\leq 0.3 \text{ mV/s}$ following the end of the pulse.	
	Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.8.	
Sampling Frequency	1000 Hz	
Sampling Channel Switch	$< 80 \mu S$	
Time		
A/D Precision	24 Bits (Minimum resolution: 0.077uV/LSB)	
☆ESU Protection	Cut mode: 300 W	
	Coagulation mode: 100 W	
	Restore time: ≤ 10 s	
Electrosurgical	Test according to ANSI/AAMI EC13:2002, Sect. 5.2.9.14.	
Interference Suppression	Complied with ANSI/AAMI EC13:2002, Sect. 4.2.9.14.	
Minimum Input Slew Rate	> 2.5 V/s	
(Lead II)		
☆Baseline Reset Time	< 3 s	
Duscimo Roset Time		

Pulse is marked if the requirements of IEC 60601-2-27: 2011, Sect. 201.1.2.1.101.12 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pulse Rejection Pulse is rejected if the requirements of IEC 60601-2-27: 2011, Sect. 201.12.1.101.13 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm Accuracy ±1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value Range -2.0 mV to +2.0 mV	Pace Pulse		
Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs ☆Pulse Rejection Pulse is rejected if the requirements of IEC 60601-2-27: 2011, Sect. 201.12.1.101.13 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ☆Range ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ☆Accuracy ±1% or 1 bpm, whichever is greater Resolution I bpm Sensitivity ≥ 300 μVPP ☆QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min	☆Pulse Indicator	-	
Ascending time: 10 μs to 100 μs Pulse is rejected if the requirements of IEC 60601-2-27: 2011, Sect. 201.12.1.101.13 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ACCURACY ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm PED/NEO: 15 bpm to 350 bpm PED/NEO: 15 bpm to 350 bpm Sensitivity ≥ 300 μVPP AQRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min		Amplitude: ±2 mV to ±700 mV	
Pulse Rejection Pulse is rejected if the requirements of IEC 60601-2-27: 2011, Sect. 201.12.1.101.13 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm PED/NEO: 15 bpm to 350 bpm Sensitivity ≥ 300 μVPP AQRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min ST value		Width: 0.1 ms to 2.0 ms	
Sect. 201.12.1.101.13 are met: Amplitude: ±2 mV to ±700 mV Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm PED/NEO: 15 bpm to 350 bpm PED/NEO: 15 bpm to 350 bpm Accuracy ±1% or 1 bpm, whichever is greater Resolution I bpm Sensitivity ≥ 300 μVPP AQRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min ST value		Ascending time: 10 μs to 100 μs	
Width: 0.1 ms to 2.0 ms Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ☆ Range ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ↑ Accuracy ±1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP ☆ QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min	☆Pulse Rejection		
Ascending time: 10 μs to 100 μs Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation ☆ Range ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ☆ Accuracy ±1% or 1 bpm, whichever is greater Resolution I bpm Sensitivity ≥ 300 μVPP ☆ QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min ST value		Amplitude: ±2 mV to ±700 mV	
Pace Pulse Detecting Lead: one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6 Heart Rate HR Calculation		Width: 0.1 ms to 2.0 ms	
Heart Rate HR Calculation ☆Range ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ☆Accuracy ±1% or 1 bpm, whichever is greater Resolution I bpm Sensitivity ≥ 300 μVPP ☆QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min ST value		Ascending time: 10 μs to 100 μs	
HR Calculation ☆Range ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ☆Accuracy ±1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min	Pace Pulse Detecting Lead:	one among I, II, III, AVR, AVL, AVF, V1, V2, V3,V4, V5, V6	
ADU: 15 bpm to 300 bpm PED/NEO: 15 bpm to 350 bpm ☆ Accuracy #1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP ☆ QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min	Heart Rate		
PED/NEO: 15 bpm to 350 bpm ☆Accuracy ±1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP ☆QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min PED/NEO: (0 to 350) PVCs/ min ST value	HR Calculation		
★Accuracy ±1% or 1 bpm, whichever is greater Resolution 1 bpm Sensitivity ≥ 300 μVPP ★QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	☆Range	ADU: 15 bpm to 300 bpm	
Resolution Sensitivity ≥ 300 μVPP The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value		PED/NEO: 15 bpm to 350 bpm	
Sensitivity ≥ 300 μVPP ☆QRS Detection Range The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	☆Accuracy	±1% or 1 bpm, whichever is greater	
The detection range has exceeded the requirement described in the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	Resolution	1 bpm	
the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied. Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.15. PVC Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	Sensitivity	≥ 300 μVPP	
Range ADU: (0 to 300) PVCs/ min PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	☆QRS Detection Range	the standard: Width: 70 ms~120 ms for adult, 40 ms~120 ms for Pediatric/neonate. Amplitude: 0.5 mv~5 mv In adult mode, these two signals are not responded: 1. when QRS amplitude of 0.15 mV or less is applied; 2. when QRS duration of 10 ms and QRS amplitude of 1 mV or less is applied.	
PED/NEO: (0 to 350) PVCs/ min Resolution 1 PVCs/min ST value	PVC	1	
Resolution 1 PVCs/min ST value	Range	ADU: (0 to 300) PVCs/ min	
ST value		PED/NEO: (0 to 350) PVCs/ min	
	Resolution	1 PVCs/min	
Range -2.0 mV to +2.0 mV	ST value		
	Range	-2.0 mV to +2.0 mV	

Accuracy	-0.8 mV to +0.8 mV: ±0.02 mV or 10%, whichever is greater.	
	Beyond this range: not specified.	
Resolution	0.01 mV	
HR Averaging Method		
Method 1	Heart rate is computed by excluding the minimum and maximum values from the 12 most recent RR intervals and averaging the residual 10 RR intervals.	
Method 2	If each of three consecutive RR intervals is greater than 1200 ms, then the four most recent RR intervals are averaged to compute the HR.	
Range of Sinus and SV Rhy	thm	
Tachy	Adult: RR interval for 5 consecutive QRS complex ≤ 0.5 s.	
	Pediatric/neonatal: RR interval for 5 consecutive QRS complex \leq 0.375 s.	
Normal	Adult: 0.5 s < RR interval for 5 consecutive QRS complex < 1.5 s.	
	Pediatric/neonatal: 0.375 s < RR interval for 5 consecutive QRS complex < 1 s.	
Brady	Adult: RR interval for 5 consecutive QRS complex \geq 1.5 s.	
	Pediatric/neonatal: RR interval for 5 consecutive QRS complex \geq 1 s.	
Range of Ventricular Rhyth	m	
V-Tach	5 consecutive ventricular beats and ventricular HR \geq 100 bpm.	
Vent Rhythm	5 consecutive ventricular beats, and 20 bpm ≤ ventricular HR < 40 bpm.	
Vent Brady	5 consecutive ventricular beats, and ventricular HR < 20 bpm.	
Maximum Start-up Alarm T	ime for Tachycardia	
Ventricular Tachycardia	Gain 0.5: 10 s	
1 mV 206 bpm	Gain 1.0: 10 s	
-	Gain 2.0: 10 s Gain 0.5: 10 s	
Ventricular Tachycardia	Gain 1.0: 10 s	
2 mV 195 bpm	Gain 2.0: 10 s	
Response Time of Heart	HR range: 80 bpm to 120 bpm	
Rate Meter to Change in	Range: Within 11 s	
HR	HR range: 80 bpm to 40 bpm	
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Range: Within 11 s	
☆Tall T-wave Rejection	Complied with IEC 60601-2-27: 2011, Sect. 201.12.1.101.17 minimum recommended 1.2 mV T-Wave amplitude	

Accuracy of Heart Rate Meter and Response to Irregular Rhythm Time to Alarm for Heart Rate alarm conditions	Complied with IEC 60601-2-27: 2011, Sect. 201.7.9.2.9.101 b) 4), the HR value after 20 seconds of stabilization is displayed as follows: Ventricular bigeminy: 80 bpm \pm 1 bpm Slow alternating ventricular bigeminy: 60 bpm \pm 1 bpm Rapid alternating ventricular bigeminy: 120 bpm \pm 1 bpm Bidirectional systoles: 91 bpm \pm 1 bpm Asystole alarm: \leq 10 s HR low alarm: \leq 10 s		
Arrhythmia analyses	Asystole	V-Fib/V-Tach	Couplet
	Vent Rhythm	PVC Bigeminy	PVC Trigeminy
	Tachy	R on T	PVC
	Irr Rhythm	Brady	Missed Beat
	Pacer not Pacing	Vent Brady	Pacer not Capture
	VEB	Run PVCs	Acc. Vent Rhythm
	IPVC	Non-Sustain VT	Multiform PVCs
	Pauses/min High	Pause	Afib
	PAC Bigeminy	PVCs High	Low Voltage(Limb)
	ExtremeBrady	PAC Trigeminy	Wide QRS Tachy
	Sustain VT	ExtremeTachy	V-Tach
12-Lead ECG	Average parameters of heart beat		
Synchronization Analysis	Heart rate (bpm)		
	Time limit of P wave (ms)		
	PR interval (ms)		
	QRS interval (ms)		
	QT/QTC (ms)		
	P-QRS-T AXIS		

A.5 RESP

Method	Impedance between RA-LL, RA-LA	
Measurement lead	Options are lead I and II. The default is Lead II.	
Calculation Type	Manual, Automatic	
Baseline Impedance Range	$200~\Omega$ to $2500~\Omega$ (with ECG cables of 1 K Ω resistance)	

Measuring Sensitivity	Within the baseline impedance range: 0.3Ω	
Waveform Bandwidth	0.2 Hz to 2.5 Hz (-3 dB)	
Respiration Excitation Waveform	Sinusoid, 45.6 kHz(\pm 10%), < 350 μ A	
☆RR Measuring Range		
☆Adult	0 rpm to120 rpm	
☆Neo/Ped	0 rpm to150 rpm	
Resolution	1 rpm	
☆Accuracy		
☆Adult	6 rpm to 120 rpm: ±2 rpm 0 rpm to 5 rpm: not specified	
☆Neo/Ped	6 rpm to 150 rpm: ±2 rpm 0 rpm to 5 rpm: not specified	
☆Gain Selection	×0.25, ×0.5, ×1, ×2, ×3, ×4, ×5	
☆Sweep	6.25 mm/s, 12.5 mm/s, 25 mm/s, 50 mm/s	
☆Apnea Alarm Time Setup	10 s, 15 s, 20 s, 25 s, 30 s, 35 s, 40 s; default value is 20 s.	

A.6 NIBP

Complies with IEC 80601-2-30: 2009+A1: 2013

Technique	Oscillometry	
Mode	Manual, Auto, Continuous	
Measuring Interval in AUTO	1/2/3/4/5/10/15/30/60/90/120/180/240/360/480	
Mode (unit: minutes)		
Continuous	5 min, interval is 5 s	
Measuring Type	SYS, DIA, MAP, PR	
☆Measuring Range		
☆Adult Mode	SYS: 25 mmHg to 290 mmHg	
	DIA: 10 mmHg to 250 mmHg	
	MAP: 15 mmHg to 260 mmHg	
☆Pediatric Mode	SYS: 25 mmHg to 240 mmHg	
	DIA: 10 mmHg to 200 mmHg	
	MAP: 15 mmHg to 215 mmHg	

☆Neonatal Mode	SYS: 25 mmHg to 140 mmHg		
	DIA: 10 mmHg to 115 mmHg		
	MAP: 15 mmHg to 125 mmHg		
☆Alarm Type	SYS, DIA, MAP, PR(NIBP)		
☆ Cuff Pressure Measuring	0 mmHg to 300 mmHg		
Range			
Pressure Resolution	1 mmHg		
☆Maximum Mean Error	±5 mmHg		
☆Maximum Standard Deviation	8 mmHg		
Maximum Measuring Period			
Adult/Pediatric	120 s		
Neonate	90 s		
Typical Measuring Period	20 s to 35 s (depend on HR/motion disturbance)		
Dual Independent Channel Overpressure Protection			
Adult	(297±3) mmHg		
Pediatric	(245±3) mmHg		
Neonatal	(147±3) mmHg		
Pre-inflation Pressure			
Adult Mode	Range: 80/100/120/140/150/160/180/200/220/240 mmHg		
Pediatric Mode	Range: 80/100/120/140/150/160/180/200 mmHg		
Neonatal Mode	Range: 60/70/80/100/120 mmHg		

A.7 SpO₂

Complies with ISO 80601-2-61: 2011.

Measuring Range	0% to 100%	
Resolution	1%	
☆Data Update Period	1 s	
☆Accuracy		
☆Adult /Pediatric	±2% (70% to 100% SpO ₂)	
	Undefined (0% to 69% SpO ₂)	
☆Neonate	±3% (70% to 100% SpO ₂)	
	Undefined (0% to 69% SpO ₂)	

Sensor		
Red Light	(660±3) nm	
Infrared Light	(905±10) nm	
Emitted Light Energy	< 15 mW	
PI		
Measuring Range	0-10, invalid PI value is 0.	
Resolution	1	

NOTE:

The information about wavelength range can be especially useful to clinicians (for instance, when photodynamic therapy is performed).

A.8 TEMP

Complies with ISO 80601-2-56: 2009.

Technique	Thermal resistance		
Position	Skin, oral cavity, rectum		
Measure Parameter	T1, T2, TD(the absolute value of T2 minus T1)		
Channel	X8:1		
	X10/X12:2		
Sensor Type	YSI-10K and YSI-2.252K		
Unit	°C, °F		
Measuring Range	0 °C to 50 °C(32 F to 122 F)		
Resolution	0.1 °C (0.1 °F)		
☆Accuracy ¹	±0.3 °C		
Refresh Time	Every 1 s to 2 s		
Temperature Calibration	At an interval of 5 to 10 minutes		
Measuring Mode	Direct Mode		
Transient Response Time	≤ 30 s		

Note 1: The accuracy consists of two parts, as following:

- Accuracy (not including sensor): ± 0.1 °C
- Sensor accuracy: $\leq \pm 0.2$ °C

A.9 PR

	Measuring range	Accuracy	Resolution
PR (SpO ₂)	25 bpm to 300 bpm	± 2 bpm	1 bpm
PR (NIBP)	40 bpm to 240 bpm	±3 bpm or 3.5%, whichever is greater	1 bpm
PR (IBP)	20 bpm to 300 bpm	30 bpm to 300 bpm: \pm 2 bpm or \pm 2%, whichever is greater;	1 bpm
		20 bpm to 29 bpm: undefined	

A.10 IBP

Complies with IEC 60601-2-34: 2011.

Technique			Direct invasive measurement	
Channel			2 channels	
IBP	☆Measuring	Art	(0 to +300) mmHg	
Measure	Range	PA	(-6 to +120) mmHg	
		CVP/RAP/LAP/ICP	(-10 to +40) mmHg	
		P1/P2	(-50 to +300) mmHg	
	Resolution	1	1 mmHg	
	☆Accuracy (no	ot including sensor)	±2% or ±1 mmHg, whichever is greater	
			ICP:	
			0 mmHg to 40 mmHg: ± 2 % or ±1 mmHg, whichever is greater;	
			-10 mmHg to -1 mmHg: undefined	
Pressure Unit			kPa, mmHg, cmH ₂ O	
Pressure sen	isor			
Sensitivity			5 μV/V/mmHg	
Impedance Range			$300~\Omega$ to $3000~\Omega$	
Filter			DC~ 12.5 Hz; DC~ 40 Hz	
Zero			Range: ± 200 mmHg	
	Pressure Calibration IBP (excluding ICP)		80 mmHg to 300 mmHg	
Range			10 mmHg to 40 mmHg	
Volume Displacement			7.4 x 10 ⁴ mm ³ / 100 mmHg	

A.11 CO₂

Complies with ISO 80601-2-55: 2011.

Intended Patient	Adult, pediatric, neonatal				
Measure Parameters	EtCO ₂ , FiCO ₂ , AwRR				
Unit	mmHg, %, kPa				
☆ Measuring	CO_2	CO ₂ 0 mmHg to 150 mmHg (0 % to 20%)			
Range	AwRR	2 rpm to 150 rpm			
	EtCO ₂	1 mmHg			
Resolution	FiCO ₂	1 mmHg	1 mmHg		
	AwRR	1 rpm	1 rpm		
☆Accuracy	EtCO ₂	± 2 mmHg, 0 mmHg to 40 mmHg ± 5% of reading, 41 mmHg to 70 mmHg ± 8% of reading, 71 mmHg to 100 mmHg ± 10% of reading, 101 mmHg to 150 mmHg ± 12% of reading or ± 4 mmHg, whichever is greater ± 1 rpm	Respiratory rate \le 60 rpm Respiratory rate > 60 rpm	Typical conditions: Ambient temperature: (25 ± 3) °C Barometric pressure: (760 ± 10) mmHg Balance gas: N ₂ Sample gas flowrate: 100 ml/min All conditions	
Drift of					
Measure Accuracy	Meets the requirements of the measure accuracy				
Sample Gas Flowrate	50 ml/min, 70 ml/min or 100 ml/min(default), accuracy: ±15 ml/min				
Warm-upTime	Display reading within 20 s; reach to the designed accuracy within 2 minutes.				
Rise Time	< 400 ms (with 2 m gas sampling tube, sample gas flowrate: 100 ml/min)				
KISC TIHIC	< 500 ms (with 2 m gas sampling tube, sample gas flowrate: 70 ml/min)				
Response	< 4 s (with 2 m gas sampling tube, sample gas flowrate: 100 ml/min)				

Time	< 4 s (with 2 m gas sampling tube, sample gas flowrate: 70 ml/min)		
Work Mode	Standby, measure		
O ₂ Compensation	Range: 0% to 100% Resolution: 1% Default: 16%		
N ₂ O Compensation	Range: 0% to 100% Resolution: 1% Default: 0%		
AG Compensation	Range: 0% to 20% Resolution: 0.1% Default: 0%		
Water vapor Compensation	OFF (default), ON		
Zero Calibration	Support		
Calibration	Support		
☆Alarm	EtCO ₂ , FiCO ₂ , AwRR		
☆ ApneaAlarm Delay	10 s, 15 s, 20 s, 25 s, 30 s, 35 s, 40 s; default value is 20 s.		
Data Sample Rate	100 Hz		
EtCO ₂ Change ¹	AwRR ≤ 80 rpm, meet the accuracy mentioned above; AwRR > 80 rpm, EtCO ₂ descends 8%; AwRR > 120 rpm, EtCO ₂ descends 10%	with 2 m gas sampling tube, sample gas flowrate: 100 ml/min)	
	AwRR ≤ 60 rpm, meet the accuracy mentioned above; AwRR > 60 rpm, EtCO ₂ descends 8%; AwRR > 90 rpm, EtCO ₂ descends 10%; AwRR > 120 rpm, EtCO ₂ descends 15%;	with 2 m gas sampling tube, sample gas flowrate: 70 ml/min)	

Note 1: Use a test device equivalent to EN ISO 80601-2-55 fig 201.101 to measure at 1:2 I/E ratio. Respiration rate accuracy is determined by frequency of device, and end-tidal reading change refers to the nominal value.

Interfering Gas Effects:

Gas	Gas Level (%)	Quantitative Effect/Comments
Nitrous oxide	60	The interfering gas will have no effect on the
Halothane	4	measurement value if compensation of O ₂ , N ₂ O, anesthetic agents has been correctly set.
Enflurane	5	anesthetic agents has been correctly set.
Isoflurane	5	
Sevoflurane	5	
Desflurane	15	

NOTE:

Respiration Rate accuracy was verified by using a solenoid test setup to deliver a square wave of known CO₂ concentration to the device. 5% and 10% CO₂ concentrations were used. Respiration rate was varied over the range of the device. Pass/Fail criteria was comparison of the respiratory rate output from the sensor to the frequency of the square wave.

A.12 C.O.

Only applicable to X12.

Technique	Thermodilution Technique	
Measure Parameters	C.O., TB, TI	
Measuring Range		
C.O.	0.1 L/min to 20 L/min	
TB	23 °C to 43 °C (73.4 °F to 109.4 °F)	
TI	-1 °C to 27 °C(30.2 °F to 80.6 °F)	
Resolution		
C.O.	0.1 L/min	
TB, TI	0.1 °C (+0.1 °F)	
Accuracy		
C.O.	\pm 5% or \pm 0.2 L/min, whichever is greater	
ТВ	±0.1 °C (not including sensor)	
TI	±0.1 °C (not including sensor)	

NOTE:

At least 90% of the C.O. data should reside inside the bounded region, and the lower 95% confidence interval should not exceed 85%.

A.13 Interfaces

A.13.1 Analog Output (Optional)

Bandwidth (-3 dB; reference frequency: 10 Hz)	Diagnosis/Monitor: 0.5 Hz to 40 Hz Diagnosis 1: 0.05 Hz to 40 Hz Surgery: 1 Hz to 20 Hz Enhanced: 2 Hz ~18 Hz Customized: When Low-pass Filter < 40 Hz, Bandwidth is High-pass Filter ~ Low-pass Filter; When Low-pass Filter > 40 Hz, Bandwidth is High-pass ~40 Hz.		
Maximum Transmission Delay (Diagnosis Mode)	500 ms		
Sensitivity	1 V/1 mV ±10%		
PACE Rejection/ Enhancement	Not applicable.		
Waveform Display	Consistent with the calculation leads.		
Compliant with Standard and Directive	Complies with the requirements in terms of short circuit protection and leakage current in EN60601-1.		
Output Impedance	< 500 Ω		
Interface Type	PS2 connector		

NOTE:

While using analog output, set the calculation lead as following:

- 1) In 3-Electrode mode, set to Lead I, Lead II, or Lead III.
- 2) In 5-Electrode mode, set to Lead I, Lead II, Lead III or Lead V.
- 3) In 6-Electrode mode, set to I, II, III, and leads corresponding to Va, Vb.
- 4) In 10-Electrode mode, set to Lead I, Lead II, Lead III or Lead V1~V6.

A.13.2 Defibrillator Synchronization (Optional)

Output Impedance	< 500 Ω	
Maximum Time Delay	35 ms (R-wave peak to leading edge of pulse)	
Waveform	Rectangular wave	
Amplitude	High level: 3.5 V to 5.5 V, providing a maximum of 1 mA output current; Low level: < 0.5 V, receiving a maximum of 5 mA input current	

Minimum Required R-wave Amplitude	0.3 mV
Pulse Width	100 ms ±10%
Limited Current	15 mA rating
Rising and Falling Time	< 1 ms
Interface Type	PS2 connector

A.13.3 Nurse Call (Optional)

Drive Mode	Voltage output	
Power Supply	≤ 12.6 VDC, 200 mA Max.	
Interface Signal	12 V power supply and PWM waveform	
Interface Type	PS2 connector	

PS2 connector Definition for Analog Output/Defibrillator Synchronization/Nurse Call

	PIN.NO.	Signal name	Signal Description
6 1	1	ANALOG_OUT	Analog out signal
5 0 2	2	GND	Ground
4	3	SYS_OUT	Defibrillator Synchronization signal
	4	+12V	Nurse call power
	5	GND	Ground
	6	NURSE_OUT	Nurse call control signal

A.13.4 USB Interfaces

Number of USB Interfaces	Standard: 2	
Drive Mode	HOST interface, USB1.0/2.0 protocol	
Power Supply	5 VDC±5%, 500 mA Max.	
Interface Type	USB A-type port	

A.13.5 VGA Interface (Optional)

Number of VGA Interface	1
Horizontal Refreshing Rate	(30-94) KHZ
Video Signal	0.7 Vpp @ 75 Ohm, HSYNC/VSYNC signal TTL
Interface Type	DB-15 female receptacle

A.13.6 Wired Network Interface

Specification	100-Base TX (IEEE802.3)
Interface Type	Standard RJ-45 network interface

B EMC Information

- Guidance and Manufacture's Declaration

B.1 Electromagnetic Emissions

Guidance and manufacture's declaration – electromagnetic emission

 $X8\ X10$ and X12 are intended for use in the electromagnetic environment specified below. The customer or the user of X8/X10/X12 should assure that they are used in such an environment.

Emission test	Compliance	Electromagnetic environment – guidance		
RF emissions CISPR 11	Group 1	X8 X10 and X12 use RF energy only for their internal function. Therefore, their RF emissions are very low and are not likely to cause any interference in nearby electronic equipment.		
RF emission CISPR 11	Class A	X8 X10 and X12 are suitable for use in all establishments, other than domestic establishments and those directly connected to		
Harmonic emissions IEC/EN 61000-3-2	Class A	the public low-voltage power supply network that supplies buildings used for domestic purposes.		
Voltage fluctuations/ flicker emissions IEC/EN 61000-3-3	Complies	Parposes		

NOTE:

The EMISSIONS characteristics of X8 X10 and X12 make it suitable for use in industrial areas and hospitals (CISPR 11 class A). If it is used in a residential environment (for which CISPR 11 class B is normally required) X8 X10 and X12 might not offer adequate protection to radio-frequency communication services. The user might need to take mitigation measures, such as relocating or re-orienting the equipment.

B.2 Electromagnetic Immunity

Guidance and manufacture's declaration – electromagnetic immunity

X8 X10 and X12 are intended for use in the electromagnetic environment specified below. The customer or the user of X8 X10 and X12 should assure that they are used in such an environment.

Immunity test	IEC/EN 60601 test level	Compliance level	Electromagnetic environment - guidance
Electrostatic discharge (ESD) IEC/EN 61000-4-2	±8 kV contact ±15 kV air	±8 kV contact ±15 kV air	Floors should be wood, concrete or ceramic tile. If floor are covered with synthetic material, the relative humidity should be at least 30%.
Electrical fast transient/burst IEC/EN 61000-4-4	±2 kV for power supply lines	±2 kV for power supply lines	Mains power quality should be that of a typical commercial or hospital environment.
Surge IEC/EN 61000-4-5	±1 kV for line to line ±2 kV for line to ground	±1 kV for line to line ±2 kV for line to ground	Mains power quality should be that of a typical commercial or hospital environment.
Power frequency (50/60Hz) magnetic field IEC/EN 61000-4-8	30 A/m	30 A/m	Power frequency magnetic fields should be at levels characteristic of a typical location in a typical commercial or hospital environment.
Voltage dips, short interruptions and voltage variations on power supply input lines	0 % $U_{T;}$ 0.5 cycle At 0 °, 45 °, 90 °, 135 °, 180 °, 225 °, 270 ° and 315 °	0 % U _T ; 0.5 cycle At 0°, 45°, 90°, 135°, 180°, 225°, 270° and 315°	Mains power quality should be that of a typical commercial or hospital environment. If the user of X8 X10 and X12 requires continued
IEC/EN 61000-4-11	$0 \% U_T$; 1 cycle and $70 \% U_T$; 25/30 cycles) Single phase: at $0 \degree$ $0 \% U_T$; 250/300 cycle	0 % U _T ; 1 cycle and 70 % U _T ; 25/30 cycles) Single phase: at 0°	operation during power mains interruptions, it is recommended that X8 X10 and X12 be powered from an uninterruptible power supply or a battery.

- 173 -

B.3 Electromagnetic Immunity

Guidance and manufacture's declaration – electromagnetic immunity

X8 X10 and X12 are intended for use in the electromagnetic environment specified below. The customer or the user of X8 X10 and X12 should assure that they are used in such an environment.

Immunity test	IEC/EN 60601 test level	Compliance level	Electromagnetic environment - guidance
			Portable and mobile RF communications equipment should be used no closer to any part of X8 X10 and X12, including cables, than the recommended separation distance calculated from the equation applicable to the frequency of the transmitter.
			Recommended separation distance
			$d = 1.2\sqrt{P}$ 150 KHz to 80 MHz
Conducted RF IEC/EN 61000-4-6 Radiated RF IEC/EN 61000-4-3	3 V _{rms} 150 kHz to 80 MHz 6Vrms ^c in ISM bands between 0.15 MHz and 80 MHz 3 V/m 80 MHz to 2.7 GHz See Table 1	3 V _{rms} 150 kHz to 80 MHz 6Vrms ^c in ISM bands between 0.15 MHz and 80 MHz 3 V/m 80 MHz to 2.7 GHz Comply with Table 1	$d = 1.2\sqrt{P}$ 80 MHz to 800 MHz $d = 2.3\sqrt{P}$ 800 MHz to 2.7 GHz $d = 6\sqrt{P}/E$ at RF wireless communications equipment bands (Portable RF communications equipment (including peripherals such as antenna cables and external antennas) should be used no closer than 30 cm (12 inches) to any part of the monitor, including cables specified by the manufacturer). Where P is the maximum output power rating of the transmitter in watts (W)

according to the transmitter manufacturer and d is the recommended separation distance in meters (m).

Field strengths from fixed RF transmitters, as determined by an electromagnetic site survey, a should be less than the compliance level in each frequency range.

Interference may occur in the vicinity of equipment marked with the following symbol:

NOTE 1 At 80 MHz and 800 MHz, the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

- Field strengths from fixed transmitters, such as base stations for radio (cellular/cordless) telephones and land mobile radios, amateur radio, AM and FM radio broadcast and TV broadcast cannot be predicted theoretically with accuracy. To assess the electromagnetic environment due to fixed RF transmitters, an electromagnetic site survey should be considered. If the measured field strength in the location in which X8 X10 and X12 are used exceeds the applicable RF compliance level above, X8 X10 and X12 should be observed to verify normal operation. If abnormal performance is observed, additional measures may be necessary, such as reorienting or relocating X8 X10 and X12.
- Over the frequency range 150kHz to 80MHz, field strengths should be less than 3V/m.
- The ISM (industrial, scientific and medical) bands between 0.15 MHz and 80 MHz are 6.765 MHz to 6.795 MHz; 13.553 MHz to 13.567 MHz; 26.957 MHz to 27.283 MHz; and 40.66 MHz to 40.70 MHz. The amateur radio bands between 0.15 MHz and 80 MHz are 1.8 MHz to 2.0 MHz, 3.5 MHz to 4.0 MHz, 5.3 MHz to 5.4 MHz, 7 MHz to 7.3 MHz, 10.1 MHz to 10.15 MHz, 14 MHz to 14.2 MHz, 18.07 MHz to 18.17 MHz, 21.0 MHz to 21.4 MHz, 24.89 MHz to 24.99 MHz, 28.0 MHz to 29.7 MHz and 50.0 MHz to 54.0 MHz.

Table 1 Test specifications for ENCLOSURE PORT IMMUNITY to RF wireless communications equipment

Test frequenc y (MHz)	Band ^{a)} (MHz)	Service ^{a)}	Modulation b)	Maximum power (W)	Distance (m)	Immuni ty test level (V/m)
385	380-390	TETRA 400	Pulse modulation b) 18 Hz	1.8	0.3	27
450	430-470	GMRS 460, FRS 460	FM c) ±5 kHz deviation 1 kHz sine	2	0.3	28
710 745	704-787	LTE Band 13, 17	Pulse modulation b)	0.2	0.3	9
780 810		GSM 800/900,	217 Hz			
870	800-960	TETRA 800, iDEN 820, CDMA 850,	Pulse modulation b) 18 Hz	2	0.3	28
930		LTE Band 5				
1720		GSM 1800; CDMA 1900;	Pulse			
1845	1700-1990	700-1990 GSM 1900; DECT; LTE Band 1, 3, 4,	modulation b) 217 Hz	2	0.3	28
1970		25; UMTS				
2450	2400-2570	Bluetooth, WLAN, 802.11 b/g/n, RFID 2450, LTE Band 7	Pulse modulation b) 217 Hz	2	0.3	28
5240		WLAN	Pulse			
5500 5785	5100-5800	802.11 a/n	modulation b) 217 Hz	0.2	0.3	9

NOTE If necessary to achieve the IMMUNITY TEST LEVEL, the distance between the transmitting antenna and the ME EQUIPMENT or ME SYSTEM may be reduced to 1 m. The 1 m test distance is permitted by IEC 61000-4-3.

- a) For some services, only the uplink frequencies are included.
- b) The carrier shall be modulated using a 50 % duty cycle square wave signal.
- c) As an alternative to FM modulation, 50 % pulse modulation at 18 Hz may be used because while it does not represent actual modulation, it would be worst case.

B.4 Recommended Separation Distances

Recommended separation distances between portable and mobile RF communications equipment and X8 X10 and X12

X8 X10 and X12 are intended for use in an electromagnetic environment in which radiated RF disturbances are controlled. The customer or the user of X8 X10 and X12 can help prevent electromagnetic interference by maintaining a minimum distance between portable and mobile RF communications equipment (transmitters) and X8 X10 and X12 as recommended below, according to the maximum output power of the communications equipment.

Rated maximum	Separation distance according to frequency of transmitter(m)			
output power of transmitter	150 kHz to 80 MHz	80 MHz to 800 MHz	800 MHz to 2.7 GHz	
(W)	$d = 1.2\sqrt{P}$	$d = 1.2\sqrt{P}$	$d = 2.3\sqrt{P}$	
0.01	0.12	0.12	0.23	
0.1	0.38	0.38	0.73	
1	1.2	1.2	2.3	
10	3.8	3.8	7.3	
100	12	12	23	

For transmitters rated at a maximum output power not listed above, the recommended separation distance d in meters (m) can be estimated using the equation applicable to the frequency of the transmitter, where P is the maximum output power rating of the transmitter in watts (W) according to the transmitter manufacturer.

NOTE 1 At 80 MHz and 800 MHz, the separation distance for the higher frequency range applies.

NOTE 2 These guidelines may not apply in all situations. Electromagnetic propagation is affected by absorption and reflection from structures, objects and people.

C Default Settings

This appendix documents the most important default settings of your monitor as it is delivered from the factory.

Note: If your monitor has been preconfigured according to your requirements, the settings at delivery will be different from the default settings listed here.

C.1 Patient Information Default Settings

Patient Information Settings		
Patient Type	Adult	
Pace	Off	

C.2 Alarm Default Settings

Alarm Settings	
Pause Time	120 s
Sensor Off Alarm	Off
Alarm Latch	Off

C.3 ECG Default Settings

ECG Settings	ADU	PED	NEO		
Alarm Switch	On				
Alarm Record	Off				
Alarm Level	Medium				
Alarm High Limit	120	160	200		
Alarm Low Limit	50	75	100		
ARR Analysis Thresho	oldValue				
Low Voltage(Limb)	0.5 mV				
Pause	3 s				
Sustain VT	30 s				
PAC Bigeminy	8/min				
Pauses/min High	8/min				
PVCs High	10/min				
PAC Trigeminy	16/min				

ExtremeTachy	160	180	200	
ExtremeBrady	30	50	60	
Pace	Off	ı		
Electrode Type	5 Electrodes			
Screen Layout	Normal			
Filter	Monitor			
Smart Lead Off	Off	Off		
Heart Volume	3			
ST Analysis	ADU	PED	NEO	
ST Analysis	Off			
Alarm Switch	Off			
Alarm Level	Medium			
Alarm Record	Off			
Alarm High Limit (ST-X)	0.2			
Alarm Low Limit (ST-X)	-0.2			
X stands for I, II, III, a	VR, aVL, aVF, V, V1, V	V2, V3, V4, V5 or V6.		
ARR Analysis				
ARR Analysis	On			
PVCs Alarm Level	Medium			
PVCs Alarm Switch	Off			
PVCs Alarm Record	Off			
ARR Alarm Settings	Alarm Switch	Alarm Level	Alarm Record	
Asystole	On (non-adjustable)	High (non-adjustable)	Off	
V-Fib/V-Tach	On	High (non-adjustable)	Off	
R on T	On	Medium	Off	
PVC	Off	Low	Off	
Couplet	On	Low	Off	
Run PVCs	On	Low	Off	
PVC Bigeminy	On	Medium	Off	
PVC Trigeminy	On	Low	Off	

Tachy	On	Medium	Off
Brady	On	Medium	Off
Missed Beat	Off	Low	Off
Irr Rhythm	Off	Low	Off
Pacer not Capture	On	Medium	Off
Pacer not Pacing	On	Medium	Off
Vent Brady	On	High (non-adjustable)	Off
Vent Rhythm	On	Medium	Off
Sustain VT	On (non-adjustable)	High (non-adjustable)	Off
ExtremeTachy	On	High (non-adjustable)	Off
ExtremeBrady	On	High (non-adjustable)	Off
V-Tach	On	High (non-adjustable)	Off
Wide QRS Tachy	On	Medium	Off
Non-Sustain VT	On	Medium	Off
Afib	On	Medium	Off
Acc. Vent Rhythm	On	Low	Off
Pause	On	Medium	Off
Pauses/min High	On	Medium	Off
PVCs High	On	Medium	Off
VEB	Off	Low	Off
Multiform PVCs	Off	Low	Off
IPVC	Off	Low	Off
PAC Bigeminy	Off	Low	Off
PAC Trigeminy	Off	Low	Off
Low Voltage(Limb)	Off	Low	Off

C.4 RESP Default Settings

RESP Settings	ADU	PED	NEO
Alarm Switch	On		
Alarm Record	Off		
Alarm Level	Medium		
Alarm High Limit	30	30	100

Alarm Low Limit	8	8	30
Apnea Alarm Time	20 s		
Calculation Type	Auto		
Resp Type	II		
Sweep	12.5 mm/s		
Amplitude	1		

C.5 SpO₂ Default Settings

SpO ₂ Settings	ADU	PED	NEO
Alarm Switch	On		
Alarm Record	Off		
Alarm Level	Medium		
Alarm High Limit	100	100	95
Alarm Low Limit	90	90	88
Pitch Tone	On		
Sweep	12.5 mm/s		
SpO ₂ Desat Limit	80%		

C.6 PR Default Settings

PR Settings	ADU	PED	NEO	
PR Source	SpO ₂			
Alarm Switch	On	On		
Alarm Record	Off			
Alarm Level	Medium			
Alarm High Limit	120	160	200	
Alarm Low Limit	50	75	100	
Pulse Volume	3			
Alarm Source	Auto			

C.7 NIBP Default Settings

NIBP Settings	ADU	PED	NEO
Alarm Switch	On	1	
Alarm Record	Off		
Alarm Level	Medium		
Alarm High Limit (SYS)	160	120	90
Alarm Low Limit (SYS)	90	70	40
Alarm High Limit (Map)	110	90	70
Alarm Low Limit (Map)	60	50	30
Alarm High Limit (DIA)	90	70	60
Alarm Low Limit (DIA)	50	40	20
Inflation value	160	140	100
Unit	mmHg	•	
Interval	Manual		

C.8 TEMP Default Settings

TEMP Settings	ADU	PED	NEO
Alarm Switch	On		
Alarm Record	Off		
Alarm Level	Medium		
Alarm High Limit (T1)	39.0	39.0	39.0
Alarm Low Limit (T1)	36.0	36.0	36.0
Alarm High Limit (T2)	39.0	39.0	39.0
Alarm Low Limit (T2)	36.0	36.0	36.0
Alarm High Limit (TD)	2.0	2.0	2.0
Unit	°C		

C.9 IBP Default Settings

IBP Settings	ADU	PED	NEO
Alarm Switch	On		
Alarm Record	Off		

Alarm Level	Medium		
Unit	mmHg		
Filter	12.5 Hz	12.5 Hz	
	SYS, DIA, MAP	SYS, DIA, MAP	SYS, DIA, MAP
Alarm High Limit (ART, P1, P2)	160, 90, 110	120, 70, 90	90, 60, 70
Alarm Low Limit (ART, P1, P2)	90, 50, 70	70, 40, 50	55, 20, 35
Alarm High Limit (PA)	35, 16, 20	60, 4, 26	60, 4, 26
Alarm Low Limit (PA)	10, 0, 0	24, -4, 12	24, -4, 12
	MAP	MAP	MAP
Alarm High Limit (CVP, RAP, LAP, ICP)	10	4	4
Alarm Low Limit (CVP, RAP, LAP, ICP)	0	0	0

C.10 CO₂ Default Settings

CO ₂ Settings	ADU	PED	NEO
Alarm Switch	On	1	
Alarm Record	Off		
Alarm Level	Medium		
Work Mode	Standby		
Unit	mmHg		
Apnea Alarm Time	20 s		
O ₂ Compensate	16%		
N ₂ O Compensate	0%		
Water vapor Compensate	Off		
Flow rate	100%		
Anes Agent	0.0%		
Alarm High Limit (EtCO ₂)	50	50	45
Alarm Low Limit (EtCO ₂)	25	25	30
Alarm High Limit (FiCO ₂)	4	4	4
Alarm High Limit (AwRR)	30	30	100

Alarm Low Limit (AwRR)	8	8	30
Sweep	6.25 mm/s		
Amplitude	Low		

C.11 C.O. Default Settings

C.O. Settings	ADU
Alarm Switch	On
Alarm Record	Off
Alarm Level	Medium
Alarm High Limit (TB)	40.0
Alarm Low Limit (TB)	30.0
Injective Temperature	Auto
Source	
Temperature Unit	°C
Interval	30
Constant	0.542

D Abbreviations

Abbr	English Full Name/Description
AC	Alternating current
Acc. Vent Rhythm	Accelerated idioventricular rhythm
Adu	Adult
Afib	Atrial fibrillation
AG	Anaesthesia gas
Art	Arterial
aVF	Left foot augmented electrode
aVL	Left arm augmented electrode
aVR	Right arm augmented electrode
AwRR	Airway respiration rate
BC	Burst count
BIS	Bispectral index
BP	Blood pressure
BTPS	Body temperature and pressure, saturated
Brady	Bradycardia
CCU	Cardiac care unit
CI	Cardiac index
C.O.	Cardiac output
CISPR	International Special Committee on Radio Interference
CMS	Central monitoring system
CO ₂	Carbon dioxide
СОНЬ	Carboxyhemoglobin
Couplet	Ventricular couplets
CVP	Central venous pressure
DC	Direct current
Des	Desflurane
Dia	Diastolic
ECG	Electrocardiogram
EEC	European Economic Community
EEG	Electroencephalogram

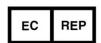
Abbr	English Full Name/Description
EMC	Electromagnetic compatibility
EMG	Electromyelogram
EMI	Electromagnetic interference
Enf	Enflurane
ER	Emergency room
ESU	Electrosurgical unit
Et	End-tidal
EtCO ₂	End-tidal carbon dioxide
EtN ₂ O	End-tidal nitrous oxide
Eto	Ethylene oxide
EtO ₂	End-tidal oxygen
ExtremeTachy	Extreme tachycardia
ExtremeBrady	Extreme bradycardia
FCC	Federal Communication Commission
FDA	Food and Drug Administration
Fi	Fraction of inspired
FiCO ₂	Fraction of inspired carbon dioxide
FiN ₂ O	Fraction of inspired nitrous oxide
FiO ₂	Fraction of inspired oxygen
Hal	Halothane
Hb	Hemoglobin
Hb-CO	Carbon mono-xide hemoglobin
HR	Heart rate
IBP	Invasive blood pressure
ICG	Impedance cardiography
ICP	Intracranial pressure
ICU	Intensive care unit
ID	Identification
IEC	International Electrotechnical Commission
IEEE	Institute of Electrical and Electronic Engineers
IPVC	Inserted premature ventricular contraction

Abbr	English Full Name/Description
Irr Rhythm	Irregular rhythm
Iso	Isoflurane
LA	Left arm
LAP	Left atrial pressure
LCD	Liquid crystal display
LED	Light emitting diode
LL	Left leg
Low Voltage(Limb)	Low QRS voltage
MAP	Mean arterial pressure
MDD	Medical Device Directive
MetHb	Methemoglobin
MRI	Magnetic resonance imaging
Multiform PVCs	Multiformed premature ventricular contractions
N/A	Not applicable
N ₂	Nitrogen
N ₂ O	Nitrous oxide
Neo	Neonate
NICU	Neonatal intensive care unit
NIBP	Non-invasive blood pressure
Non-Sustain VT	Nonsustained ventricular tachycardia
O_2	Oxygen
OR	Operating room
OxyCRG	Oxygen cardio-respirogram
PA	Pulmonary artery
PAC Bigeminy	Premature Atrial Contraction (PAC) Bigeminy
PACU	Post-anaesthesia care unit
PAC Trigeminy	Premature Atrial Contraction (PAC) Trigeminy
PAWP	Pulmonary artery wedge pressure
Ped	Pediatric
Pleth	Plethysmogram
PR	Pulse rate

Abbr	English Full Name/Description
PVC	Premature ventricular contraction
PVC Bigeminy	Premature ventricular contraction Bigeminy
PVC Trigeminy	Premature ventricular contraction Trigeminy
R	Right
RA	Right arm
RAP	Right atrial pressure
Resp	Respiration
RHb	Reduced hemoglobin
RL	Right leg
RM	Respiration mechanics
RR	Respiration Rate
Run PVCs	Run premature ventricular contractions
SEF	Spectral edge frequency
Sev	Sevoflurane
SpO ₂	Pulse Oxygen Saturation
SQI	Signal quality indicator
SR	Suppression ratio
SYS	Systolic pressure
Sustain VT	Sustained ventricular tachycardia
Tachy	Tachycardia
TB	Blood Temperature
TD	Temperature difference
TEMP	Temperature
TP	Total power
USB	Universal serial bus
VEB	Ventricular escape beat
Vent Brady	Ventricular bradycardia
Vent Rhythm	Ventricular rhythm
V-Fib/V-Tach	Ventricular fibrillation/ventricular tachycardia
V-Tach	Ventricular tachycardia
Wide QRS Tachy	Wide QRS tachycardia

P/N: 01.54.458083

MPN: 01.54.458083012


EDAN INSTRUMENTS, INC.

#15 Jinhui Road, Jinsha Community, Kengzi Sub-District Pingshan District, 518122 Shenzhen, P.R.China

Email: info@edan.com.cn

TEL: +86-755-2689 8326 FAX: +86-755-2689 8330

Website: www.edan.com.cn

EC REPRESENTATIVE

Shanghai International Holding Corp. GmbH Eiffestrasse 80, 20537 Hamburg Germany

TEL: +49-40-2513175

E-mail: shholding@hotmail.com